精英家教网 > 高中数学 > 题目详情
?一个几何体的三视图如图所示,则该几何体的体积为
 

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:根据三视图判断几何体是两个相同的三棱锥的组合体,且三棱锥的底面是直角边长为1的等腰直角三角形,棱锥的高为,把数据代入棱锥的体积公式计算.
解答: 解:由三视图知几何体是两个相同的三棱锥的组合体,其直观图如图:

且三棱锥的底面是直角边长为1的等腰直角三角形,棱锥的高为;
∴几何体的体积V=2×
1
3
×
1
2
×1×1=
1
3

故答案为:
1
3
点评:本题考查了由三视图求几何体的体积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求二面角A-PD-C的余弦值;
(Ⅲ)在棱PB上是否存在点F,使EF∥平面PDC?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长是a,求三棱锥B-AB1C的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两平面的法向量分别为
m
=(1,1,0),
n
=(0,1,1),则两平面所成的二面角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

0<β<α<
π
2
,且cosα=
1
7
 ,  cos(α-β)=
13
14
,则tanβ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二项式(x+
1
2x
)6
的展开式的常数项为T,则
T
0
2xdx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠BAC=120°,AB=
3
,AC=1,D是BC上一点,DC=2BD,则
AD
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设光线从点A(-2,2)出发,经过x轴反射后经过点B(0,1),则光线与x轴的交点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,tanB=-2,tanC=
1
3
,则A等于(  )
A、
π
4
B、
4
C、
π
3
D、
π
6

查看答案和解析>>

同步练习册答案