精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足$\left\{\begin{array}{l}x-y-1≥0\\ x-5y+3≥0\\ x+3y+3≥0\end{array}\right.$,若z=2x-y的最小值为(  )
A.-6B.1C.3D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y-1≥0\\ x-5y+3≥0\\ x+3y+3≥0\end{array}\right.$作出可行域如图,

化目标函数z=2x-y为y=2x-z,
由图可知,当直线y=2x-z过A(-3,0)时,直线在y轴上的截距最大,z有最小值为-6.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)+2=\frac{2}{{f(\sqrt{x+1})}}$,当x∈(0,1]时,f(x)=x2,若在区间(-1,1]内,g(x)=f(x)-t(x+1)有两个不同的零点,则实数t的取值范围是(  )
A.$[\frac{1}{2},+∞)$B.$[-\frac{1}{2},\frac{1}{2}]$C.$[-\frac{1}{2},0)$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合$M=\left\{{x∈R\left|{\frac{x+2}{x-1}≤0}\right.}\right\}{,_{\;}}N$为自然数集,则下列选项正确的是(  )
A.M⊆{x|x≥1}B.M⊆{x|x>-2}C.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知各项均为正数的数列{an}前n项和为Sn,若${S_1}=2{,_{\;}}3{S_n}^2-2{a_{n+1}}{S_n}=a_{n+1}^2$,则an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足an+1+an=n,若a1=2,则a8-a4=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b,c∈R,则“a>0且b2-4ac<0”是“?x∈R,都有ax2+bx+c≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,若2(b2+2accos2B)=2a2+2c2-ac.
(I)求角B的大小;
(Ⅱ)若S△ABC=$\sqrt{3}$,求asinA+csinC的最小值.

查看答案和解析>>

同步练习册答案