精英家教网 > 高中数学 > 题目详情
已知二次函数y=x2-2ax的定义域为{x|0≤x≤1}.求此函数的最小值.
考点:二次函数在闭区间上的最值
专题:函数的性质及应用
分析:由于函数的对称轴是x=a,所以要讨论a与区间的位置关系,再分别计算最小值.
解答: 解:由已知得:函数y=x2-2ax的对称轴为:x=a 因为已知函数的定义域为[0,1],
①当a<0时,原函数在[0,1]上递增,∴ymin=f(0)=0;
②当0≤a≤1时,ymin=f(a)=a2-2a2=-a2
③当a>1时,ymin=f(1)=1-2a,
综上函数的最小值为ymin=
0,a<0
-a2,0≤a≤1
1-2a,a>1
点评:本题考查了二次函数在闭区间上的最值;在对称轴不确定的时候,要讨论对称轴与区间的位置关系,确定区间的单调性,再求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sinωx•cos(ωx+
π
4
)+2sin2ωx+
1
2
,直线y=1-
2
2
与f(x)的图象交点之间的最短距离为π.
(Ⅰ)求f(x)的解析式及其图象的对称中心;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,若∠A是锐角,且f(
A
2
+
π
8
)=
3
2
,c=4,a+b=4
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
(x≥1),若a为正常数,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C(如图2).

(Ⅰ)求证:A1D⊥平面BCED;
(Ⅱ)若点P在线段BC上,PB=
5
2
,求直线PA1与平面A1BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
结果奖励
1红1白10元
1红1黑5元
2黑2元
1白1黑不获奖
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;
(2)某顾客参与两次摸球,求他能中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=lnx,
(1)求证:f(x)≥x+1;
(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;
(3)求证:对任意给定的正数a,总存在正数x,使得|
f(x)-1
x
-1|<a成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为R,已知f(x-y)=f(x)g(y)-g(x)f(y),且f(2)=f(-1)≠0,求g(-1)+g(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)log327+lg40+lg25-lne2 
(2)(
2
3
-2+(1-
2
0-(3
3
8
 
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
x-
1
a
x2-x-2
>0,(a≠0).

查看答案和解析>>

同步练习册答案