精英家教网 > 高中数学 > 题目详情
9.二项式($\sqrt{x}$+$\frac{{4\sqrt{x}}}{x}$-4)4的展开式中常数项是(  )
A.3360B.-1120C.-3360D.1120

分析 利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.

解答 解:($\sqrt{x}$+$\frac{{4\sqrt{x}}}{x}$-4)4=($\root{4}{x}$-$\frac{2}{\root{4}{x}}$)8
展开式的通项是Tr+1=${C}_{8}^{r}$•(-2)r•${x}^{\frac{4-r}{2}}$,
令4-r=0,可得r=4,
∴二项式($\sqrt{x}$+$\frac{{4\sqrt{x}}}{x}$-4)4的展开式中常数项是${C}_{8}^{4}•(-2)^{4}$=1120,
故选:D.

点评 本题考查二项式定理的应用,二项展开式的通项公式是解决二项展开式的特定项问题的工具.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R,则“a>b>1”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线y=3x2的准线方程是y=-$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,a3+a5=16,若对任意正整数n都有a1+a2+a3+…+an=an2+bn,其中a,b为常数,则128a+2b的最小值为32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+4y-21=0内有一点M(-3,-3),AB为过点M的弦.
(1)当AB的倾斜角为135°时,求AB的长;
(2)求AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在一张纸上画一个圆,圆心O,并在圆外设一点F,折叠纸圆上某点落于F点,设该点为M,抹平纸片,折痕AB,连接MO(或者OM)并延长交于AB于P,则P点轨迹为(  )
A.椭圆B.双曲线C.抛物线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某网店在2015年元旦开展庆新年网购促销活动,规定“全场6折促销”活动,在元旦当天购物还可以享受“每张订单金额(6折后)满300元时可减免100元”,某单位在元旦当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他需要下的订单张数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax3-bx2sinx+$\frac{1}{2}$c3,若f′(a)=-1,则f′(-a)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.经过点P(-2,1),且斜率为0的直线方程一般式为y-1=0.

查看答案和解析>>

同步练习册答案