精英家教网 > 高中数学 > 题目详情
14.在一张纸上画一个圆,圆心O,并在圆外设一点F,折叠纸圆上某点落于F点,设该点为M,抹平纸片,折痕AB,连接MO(或者OM)并延长交于AB于P,则P点轨迹为(  )
A.椭圆B.双曲线C.抛物线D.直线

分析 根据ABC是线段MF的垂直平分线.可推断出|MP|=|PF|,进而可知|PO|-|PF|=|PO|-|PM|=|MO|结果为定值,进而根据双曲线的定义推断出点P的轨迹.

解答 解:由题意知,AB是线段MF的垂直平分线.
∴|MP|=|PF|,
∴|PO|-|PF|=|PO|-|PM|=|MO|(定值),
又显然|MO|<|FO|,
∴根据双曲线的定义可推断出点P轨迹是以F、O两点为焦点的双曲线.
故选:B.

点评 本题主要考查了双曲线的定义的应用.考查了学生对双曲线基础知识的理解和应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列函数中,定义域为[1,+∞)的是(  )
A.y=$\sqrt{x-1}$+$\sqrt{x+1}$B.y=(x-1)2C.y=($\frac{1}{2}$)x-1D.y=ln(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,若椭圆上存在点P满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,则此椭圆离心率的取值范围是[$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A(1,2,1),B(-1,3,4),C(1,1,1),$\overrightarrow{AP}$=2$\overrightarrow{PB}$,则$\overrightarrow{PC}$=(  )
A.(-$\frac{1}{3}$,$\frac{8}{3}$,3)B.($\frac{1}{3}$,-$\frac{8}{3}$,-3)C.(-$\frac{4}{3}$,$\frac{5}{3}$,2)D.($\frac{4}{3}$,-$\frac{5}{3}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.二项式($\sqrt{x}$+$\frac{{4\sqrt{x}}}{x}$-4)4的展开式中常数项是(  )
A.3360B.-1120C.-3360D.1120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是(  )
A.4x-3y-19=0B.4x+3y-13=0C.3x-4y-16=0D.3x+4y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:(x-a)2+(y-b)2=r2(a>0,r>0)与直线x=1相切,圆心C在直线4x-3y=0上,且到直线x-y-1=0的距离为$\sqrt{2}$.
(1)求a,b,r的值;
(2)已知点A(-1,0),B(1,0),P是圆C上的任意一点,求|PA|2+|PB|2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知f(x)=|x2-4x|+ax-2恰有2个零点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方式,PA=AB=1,E是PD上的点,PB∥平面AEC,
(Ⅰ)确定点E的位置并证明AE⊥PC
(Ⅱ)求三棱锥P-AEC的体积.

查看答案和解析>>

同步练习册答案