精英家教网 > 高中数学 > 题目详情
有如下命题:
①若0<a<1,?x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点p(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011.
其中真命题的个数为
 
考点:命题的真假判断与应用
专题:阅读型,简易逻辑
分析:由指数函数的单调性判断①;
对数函数的图象恒过定点(1,0),再利用函数图象平移求得P的坐标,求出logmn的值判断②;
利用函数的单调区间不能取并集说明③错误;
根据指数函数的值域为R,判断④正确.
解答: 解:对于①,∵函数y=ax为减函数,∴?x<0,则ax>a0=1.命题①正确;
对于②,∵函数y=loga(x-1)+1的图象过定点P(2,1),∴m=2,n=1.
则logmn=log21=0.命题②正确;
对于③,函数y=x-1的单调递减区间为(-∞,0),(0,+∞).命题③错误;
对于④,∵y=tanx的值域为R,∴?x∈R,使tanx=2011.命题④正确.
∴其中真命题的个数为3.
故答案为:3.
点评:本题考查命题的真假判断与应用,考查了基本初等函数的图象与性质,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足
y≥x
x+y≤2
x≥a
,且目标函数z=2x+y的最大值是最小值的8倍,则实数a的值是(  )
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
4x+3y≤20
x-3y≤2
x,y∈N+
,求z=7x+5y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数且f(1)=2,当x1、x2∈[-1,1],且x1+x2≠0时,有
f(x1)+f(x2)
x1+x2
>0,若f(x)≥m2-2am-5对所有x∈[-1,1]、a∈[-1,1]恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列说法:
①函数y=-cos2x的最小正周期是π;
②终边在y轴上的角的集合是{a|a=
2
, k∈Z}

③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位长度得到函数y=3sin2x的图象;
⑤函数y=sin(x-
π
2
)
在[0,π]上是减函数.
其中,正确的说法是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(2,4),
b
=(1,-2),若
c
=
a
-(
a
b
b
,则|
c
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.则a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x-
3
(cos2x-sin2x)
的图象为C,如下结论中正确的是
 

①图象C关于直线x=
11
12
π对称;       
②图象C关于点(
3
,0)对称;
③函数f(x)在区间(-
π
12
12
)内是增函数;④由y=2sin2x的图角向右平移
π
3
个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b2=11
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ只限文班做)求数列{
1
anan+1
}
的前n项和Tn
(Ⅱ只限理班做)求数列{
an
bn
}
的前n项和Tn

查看答案和解析>>

同步练习册答案