精英家教网 > 高中数学 > 题目详情
6.己知三点A(-3,3),B(0,1)和C(1,0),则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=5.

分析 根据平面向量的加法的坐标运算以及向量模长的计算公式解答即可.

解答 解:由已知三点A(-3,3),B(0,1)和C(1,0),则$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$=(4,-3),
所以|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=$\sqrt{{4}^{2}+(-3)^{2}}$=5;
故答案为:5.

点评 本题考查了有向线段的坐标表示;用终点坐标减起点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m的取值范围是(  )
A.(5,8)B.(8,+∞)C.($\frac{13}{2}$,8)D.(5,$\frac{13}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{2}{x^2}-ax+({a-1})lnx$.讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$sin(\frac{π}{4}+α)=\frac{1}{2}$,则$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点是A(0,1),B,C,是椭圆上两点,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0.
(1)若椭圆的另一个顶点是抛物线y2=8x的焦点,求椭圆的离心率;
(2)若△ABC面积的最大值为$\frac{27}{8}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.探究函数$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并确定取得最小值时x的值.列表如下:
x0.511.51.71.922.12.22.33457
y16108.348.18.0188.018.048.088.61011.615.14
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}的前n项和Sn=3n2-2n+2,则数列{an}的通项公式an=$\left\{\begin{array}{l}{3,n=1}\\{6n-5,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.日晷,是中国古代利用日影测得时刻的一种计时工具,又称“日规”.其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.如图是故宫中的一个日晷,则根据图片判断此日晷的侧(左)视图可能为  (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$sinx=-\frac{2}{5}(π<x<\frac{3π}{2})$,则x=$π+arcsin\frac{2}{5}$(用反正弦表示)

查看答案和解析>>

同步练习册答案