精英家教网 > 高中数学 > 题目详情
6.若$sin(\frac{π}{4}+α)=\frac{1}{2}$,则$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$的值为-$\frac{1}{2}$.

分析 由已知利用诱导公式化简所求即可得解.

解答 解:∵$sin(\frac{π}{4}+α)=\frac{1}{2}$,
∴$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$=$\frac{-sin(\frac{π}{4}+α)}{cos(\frac{π}{4}+α)}$•cos($\frac{π}{4}$+α)=-sin($\frac{π}{4}$+α)=$-\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若n是正整数,则${7^n}+{7^{n-1}}C_n^1+{7^{n-2}}C_n^2+…+7C_n^{n-1}$除以9的余数是0或7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知 a=$\frac{-3-i}{1+2i}$(i是虚数单位),那么 a 2=-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用1,2,3,4这四个数字能组成没有重复数字的三位数24个.(用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,A=60°,c=2,且${S_{△ABC}}=\frac{{\sqrt{3}}}{2}$,则边a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为134.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.己知三点A(-3,3),B(0,1)和C(1,0),则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sin α=$\frac{4\sqrt{3}}{7}$,cos(α+β)=-$\frac{11}{14}$,α,β均为锐角,求cos β 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.实数x取什么值时,复数z=(x2-2x-3)+(x2+3x+2)i(i为虚数单位);
(1)是实数?
(2)对应的点位于复平面的第二象限?

查看答案和解析>>

同步练习册答案