分析 以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1B与C1E所成角.
解答
解:以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,
则A1(0,0,2),B(2,0,0),C1(2,2,2),E(0,1,0),
$\overrightarrow{{{A}_{1}B}^{\;}}$=(2,0,-2),$\overrightarrow{{C}_{1}E}$=(-2,-1,-2),
设异面直线A1B与C1E所成角为θ,
则cosθ=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{{C}_{1}E}|}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{{C}_{1}E}|}$=$\frac{|-4+4|}{\sqrt{8}•\sqrt{9}}$=0,
∴θ=90°.
∴异面直线A1B与C1E所成角等于90°.
故答案为:90°.
点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B={-1} | B. | (∁RA)∪B=(-∞,0) | C. | A∪B=(0,+∞) | D. | (∁RA)∩B={-1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相交 | B. | 外离 | C. | 外切 | D. | 内切 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(3x-$\frac{3π}{4}$) | B. | y=sin(3x+$\frac{π}{4}$) | C. | y=sin(3x-$\frac{π}{4}$) | D. | y=sin(3x+$\frac{3π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com