精英家教网 > 高中数学 > 题目详情
19.如图所示,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中a>b>0,F1,F2分别为其左,右焦点,点P是椭圆C上一点,PO⊥F2M,且$\overrightarrow{{F_1}M}=λ\overrightarrow{MP}$.
(1)当$a=2\sqrt{2}$,b=2,且PF2⊥F1F2时,求λ的值;
(2)若λ=2,试求椭圆C离心率e的范围.

分析 (1)当$a=2\sqrt{2}$,b=2时,椭圆C为:$\frac{x^2}{8}+\frac{y^2}{4}=1$,可得F1,F2,利用PF2⊥F1F2,可得P坐标.可得直线F2M方程,直线F1M方程,解得λ.
(2)设P(x0,y0),M(xM,yM),由$\overrightarrow{{F_1}M}=2\overrightarrow{MP}$,可得$\overrightarrow{{F}_{1}M}$,M坐标,$\overrightarrow{{F}_{2}M}$,由$\overrightarrow{PO}⊥\overrightarrow{{F_2}M}$,$\overrightarrow{OP}=({x_0},{y_0})$,又$\frac{{{x_0}^2}}{a^2}+\frac{{{y_0}^2}}{b^2}=1$,联立解出即可得出.

解答 解:(1)当$a=2\sqrt{2}$,b=2时,椭圆C为:$\frac{x^2}{8}+\frac{y^2}{4}=1$,F1(-2,0),F2(2,0),
∴PF2⊥F1F2,则$P(2,\sqrt{2})$或$P(2,-\sqrt{2})$,
当$P(2,\sqrt{2})$时,${k_{OP}}=\frac{{\sqrt{2}}}{2}$,${k_{{F_2}M}}=-\sqrt{2}$,${k_{{F_1}M}}=\frac{{\sqrt{2}}}{4}$,
直线F2M:$y=-\sqrt{2}(x-2)$,①
直线F1M:$y=\frac{{\sqrt{2}}}{4}(x+2)$,②
联立①②解得${x_1}=\frac{6}{5}$,
∴$λ=\frac{{{x_M}-{x_{F_1}}}}{{{x_P}-{x_M}}}=4$.
同理可得当$P(2,-\sqrt{2})$时,λ=4,
综上所述,λ=4.
(2)设P(x0,y0),M(xM,yM),
由$\overrightarrow{{F_1}M}=2\overrightarrow{MP}$,
∴$\overrightarrow{{F_1}M}=\frac{2}{3}({x_0}+c,{y_0})=({x_M}+c,{y_M})$,
∴$M(\frac{2}{3}{x_0}-\frac{1}{3}c,\frac{2}{3}{y_0})$,$\overrightarrow{{F_2}M}=(\frac{2}{3}{x_0}-\frac{4}{3}c,\frac{2}{3}{y_0})$,
由$\overrightarrow{PO}⊥\overrightarrow{{F_2}M}$,$\overrightarrow{OP}=({x_0},{y_0})$,
∴$(\frac{2}{3}{x_0}-\frac{4}{3}c){x_0}+\frac{2}{3}{y_0}^2=0$,
即${x_0}^2+{y_0}^2=2c{x_0}$,③
又$\frac{{{x_0}^2}}{a^2}+\frac{{{y_0}^2}}{b^2}=1$,④
联立③④解得${x_0}=\frac{a+c}{c}$(舍)或${x_0}=\frac{a(a-c)}{c}$,(∵x0∈(-a,a)),
∴${x_0}=\frac{a(a-c)}{c}∈(0,a)$,即0<a2-ac<ac,
∴$e>\frac{1}{2}$,故$e∈(\frac{1}{2},1)$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、向量运算性质、不等式解法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,AB=5,AC=12,BC=13,一只小蚂蚁从△ABC的内切圆的圆心处开始随机爬行,当蚂蚁(在三角形内部)与△ABC各边距离不低于1个单位时其行动是安全的,则这只小蚂蚁在△ABC内任意行动时安全的概率是(  )
A.$\frac{1}{4}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三角形ABC是单位圆的内接三角形,AB=AC=1,过点A作BC的垂线交单位圆于点D,则$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市春节期间7家超市的广告费支出xi(万元)和销售额yi(万元)数据如下:
超市ABCDEFG
广告费支出xi1246111319
销售额yi19324044525354
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为60°,$|\overrightarrow a|=1$,$|2\overrightarrow a-\overrightarrow b|=\sqrt{7}$,则$|\overrightarrow b|$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{\begin{array}{l}{e^{x-1}}\;\;,\;\;x≤1\\ 5-{x^2}\;\;,\;\;x>1\end{array}\right.$,则f(f(2))=(  )
A.1B.4C.0D.5-e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列{an}的前n项和为Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,若a3=8,则a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+2的图象的某一个对称点,并利用对称中心的上述定义,可得到$f(-1)+f(-\frac{9}{10})+…+f(0)+…+f(\frac{9}{10})+f(1)$=42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,且λ$\overrightarrow{a}$+μ$\overrightarrow{b}$=$\overrightarrow{0}$(λ,μ∈R),则(  )
A.$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=$\overrightarrow{0}$B.λ=μ=0C.λ=0,$\overrightarrow{b}$=$\overrightarrow{0}$D.$\overrightarrow{a}$=$\overrightarrow{0}$,μ=0

查看答案和解析>>

同步练习册答案