分析 (1)利用三角恒等变换化简sin(C-$\frac{π}{6}$)•cosC=$\frac{1}{4}$,即可求出C的值;
(2)根据向量$\overrightarrow{m}$、$\overrightarrow{n}$共线,得出sinB=2sinA,即b=2a①;
由余弦定理得出a2+b2-ab=9②,①②联立解得a、b的值.
解答 解:(1)sin(C-$\frac{π}{6}$)•cosC=(sinCcos$\frac{π}{6}$-cosCsin$\frac{π}{6}$)•cosC
=$\frac{\sqrt{3}}{2}$sinCcosC-$\frac{1}{2}$cos2C
=$\frac{\sqrt{3}}{4}$sin2C-$\frac{1+cos2C}{4}$
=$\frac{1}{2}$sin(2C-$\frac{π}{6}$)-$\frac{1}{4}$=$\frac{1}{4}$,
∴sin(2C-$\frac{π}{6}$)=1;
又0<C<π,
∴-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,
∴2C-$\frac{π}{6}$=$\frac{π}{2}$,
解得C=$\frac{π}{3}$;
(2)向量$\overrightarrow{m}$=(1,sinA)与$\overrightarrow{n}$=(2,sinB)共线,
∴2sinA-sinB=0,
∴sinB=2sinA,
即b=2a①;
又c=3,C=$\frac{π}{3}$,
∴c2=a2+b2-2abcosC=a2+b2-ab=9②;
由①②联立解得a=$\sqrt{3}$,b=2$\sqrt{3}$.
点评 本题考查了三角恒等变换以及向量共线定理和正弦、余弦定理的应用问题,是综合性题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{8}{3}$或8 | D. | 3或8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | 不能确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com