精英家教网 > 高中数学 > 题目详情
1
1•4
+
1
4•7
+…+
1
(3n-2)(3n+1)
等于(  )
A、
2n-2
3n+1
B、
2n-1
3n+1
C、
n+1
3n+1
D、
n
3n+1
考点:数列的求和
专题:等差数列与等比数列
分析:由于
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)
,利用“裂项求和”即可得出.
解答: 解:∵
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

1
1•4
+
1
4•7
+…+
1
(3n-2)(3n+1)
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)
+…+(
1
3n-2
-
1
3n+1
)]

=
1
3
(1-
1
3n+1
)

=
n
3n+1

故选:D.
点评:本题考查了数列的“裂项求和”方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为
π
3
的直线n,交直线l于点A,交圆M于不同的两点O、B,且|AO|=|BO|=2.
(1)求圆M和抛物线C的方程;
(2)若P为抛物线C上的动点,求
PM
PF
的最小值;
(3)过直线l上的动点Q向圆M作切线,切点分别为S、T,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(1)|4x-3|<21;
(2)|
x-1
2
+2|≥
3
4

(3)
|3x-1|-1
2
|1-3x|+1
3

(4)|x+3|>x+3;
(5)|3x-4|>2x-1;
(6)|3x-4|≤x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,若
AC
=
AB
+
AD
,则四边形ABCD的形状一定是(  )
A、平行四边形B、菱形
C、矩形D、正方形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+2=-an(n∈N*),且a1=1,a2=2,则该数列前2012项的和为(  )
A、-3B、3C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示,直三棱柱ABC-A1B1C1中,P,Q分别是侧棱AA1,CC1上的点,且A1P=CQ,则四棱锥B1-A1PQC1的体积与多面体ABC-PB1Q的体积比值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设2b是1-a和1+a的等比中项,则a+4b的最大值为(  )
A、1
B、3
C、
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x≥0
y≥0
x+y≤2
,则
y-2
x-3
的最大值为(  )
A、2
B、
2
3
C、0
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)在x0处可导,
lim
△x→0
f(x0-2△x)-f(x0)
△x
的值是(  )
A、2f′(x0
B、-f′(x0
C、-2f′(x0
D、不一定存在

查看答案和解析>>

同步练习册答案