精英家教网 > 高中数学 > 题目详情

【题目】已知 则方程 的根的个数为( )
A.5
B.4
C.1
D.无数多个

【答案】B
【解析】结合函数的解析式可知,当 时,
将函数在区间 上的图象向左平移 个单位即可得到函数在区间 上的图象;
同样的方法,向右平移 次即可得到函数 的图象,
然后绘制函数 的图象,观察可得,函数 与函数 的交点的个数为 个,
则方程 的根的个数为4个.
所以答案是:B.

【考点精析】掌握函数的零点与方程根的关系和函数的零点是解答本题的根本,需要知道二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x0是f(x)= 的一个零点,x1∈(-∞,x0),x2∈(x0,0),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程kx-ln x=0有两个实数根,则k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数为奇函数的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆柱 的母线, 是底面圆 的直径, 的中点.

(Ⅰ)问: 上是否存在点 使得 平面 ?请说明理由;
(Ⅱ)在(Ⅰ)的条件下,若 平面 ,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥 外会有被捕的危险,求小鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程为 为参数),直线 的参数方程为 为参数).
(Ⅰ)求曲线 和直线 的普通方程;
(Ⅱ)若点 为曲线 上一点,求点 到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),直线 的参数方程为 为参数),设 的交点为 ,当 变化时, 的轨迹为曲线 .
(1)写出 的普遍方程及参数方程;
(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线 的极坐标方程为 为曲线 上的动点,求点 的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,圆 的极坐标方程为
(1)将圆 的极坐标方程化为直角坐标方程;
(2)过点 作斜率为1直线 与圆 交于 两点,试求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且椭圆 过点 ,直线 过椭圆 的右焦点 且与椭圆 交于 两点.
(Ⅰ)求椭圆 的标准方程;
(Ⅱ)已知点 ,求证:若圆 与直线 相切,则圆 与直线 也相切.

查看答案和解析>>

同步练习册答案