精英家教网 > 高中数学 > 题目详情

【题目】若方程kx-ln x=0有两个实数根,则k的取值范围是

【答案】
【解析】令y=kx,y=ln x.
若方程kx-ln x=0有两个实数根,
则直线y=kx与曲线y=ln x有两个不同交点.
故直线y=kx应介于x轴和曲线y=ln x过原点的切线之间.
设曲线y=ln x过原点的切线的切点为(x0 , ln x0),
又y′|x=x0 ,故切线方程为y-ln x0 (x-x0),将原点代入得,x0=e,此时y′|x=x0 ,故所求k的取值范围是 .
本题考查了函数零点与函数图象的关系.利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C的对边分别为a,b,c,且asinB+bcosA=0.
(1)求角A的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,底面梯形 ,平面 平面 是等边三角形,已知 上任意一点, ,且 .

(1)求证:平面 平面
(2)试确定 的值,使三棱锥 体积为三棱锥 体积的3倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边分别a,b,c,已知 ,且
(1)证明sinBsinC=sinA;
(2)若a2+c2﹣b2= ac,求tanC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若幂函数f(x)的图象过点 ,则函数g(x)=exf(x)的单调递减区间为( )
A.(-∞,0)
B.(-∞,-2)
C.(-2,-1)
D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln x-bx2 , a,b∈R.
(1)若f(x)在x=1处与直线y=- 相切,求a,b的值;
(2)在(1)的条件下,求f(x)在 上的最大值;
(3)若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 为常数, 为自然对数的底数).
(1)讨论函数 的单调性;
(2)设曲线 处的切线为 ,当 时,求直线 轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 则方程 的根的个数为( )
A.5
B.4
C.1
D.无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥 外接球的表面积为32 ,三棱锥 的三视图如图所示,则其侧视图的面积的最大值为( )

A.4
B.
C.8
D.

查看答案和解析>>

同步练习册答案