精英家教网 > 高中数学 > 题目详情
2.若非零向量$\overrightarrow{a}$,b满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥(3$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角余弦值为$\frac{1}{4}$.

分析 运用向量垂直的条件:数量积为0,以及数量积的性质:向量的平方即为模的平方,结合向量的夹角的余弦公式,计算即可得到所求值.

解答 解:非零向量$\overrightarrow{a}$,b满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥(3$\overrightarrow{a}$-$\overrightarrow{b}$),
可得($\overrightarrow{a}$+$\overrightarrow{b}$)•(3$\overrightarrow{a}$-$\overrightarrow{b}$)=0,
即有3$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$-$\overrightarrow{b}$2=0,
即为3+2$\overrightarrow{a}$•$\overrightarrow{b}$-4=0,
解得$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,
则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角余弦值为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{\frac{1}{2}}{1×2}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查向量数量积的夹角公式和性质,主要是向量的平方即为模的平方,向量垂直的条件:数量积为0,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a,b∈R,i为虚数单位,当a+bi=i(1-i)时,则$\frac{a+bi}{a-bi}$=(  )
A.iB.-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x)满足:f(x+1)=f(x-1),且当-1<x<0时,f(x)=2x-1,则f(log220)等于(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正方体ABCD-A1B1C1D1的棱长为2,长度为2的线段MN的一个端点M在棱DD1上运动,另一个端点N在正方形ABCD内运动,则MN中点的轨迹与正方体ABCD-A1B1C1D1的表面所围成的较小的几何体的体积等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若将函数y=sin2x的图象向左平移$\frac{π}{6}$个单位,则平移后的图象(  )
A.关于点$(-\frac{π}{12},0)$对称B.关于直线$x=-\frac{π}{12}$对称
C.关于点$(\frac{π}{12},0)$对称D.关于直线$x=\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$M(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若A1,A2是椭圆E的左右顶点,过点A2作直线l与x轴垂直,点P是椭圆E上的任意一点(不同于椭圆E的四个顶点),联结PA;交直线l与点B,点Q为线段A1B的中点,求证:直线PQ与椭圆E只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为坐标原点,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,A,B分别为左、右顶点,过点F做x轴的垂线交双曲线于点P,Q,连接PB交y轴于点E,连结AE交QF于点M,若M是线段QF的中点,则双曲线C的离心率为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(理)设θ为直线$x-\sqrt{3}y-1=0$的倾斜角,则$sin(θ+\frac{π}{4})$=(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+1}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.
(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;
(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.

查看答案和解析>>

同步练习册答案