精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.

分析 (Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.
(Ⅱ)建立空间坐标系,利用向量法即可求二面角F-AE-B的余弦值;
(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值

解答 证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,
∴AO⊥EF,
∵平面AEF⊥平面EFCB,AO?平面AEF,
∴AO⊥平面EFCB
∴AO⊥BE.
(Ⅱ)取BC的中点G,连接OG,
∵EFCB是等腰梯形,
∴OG⊥EF,
由(Ⅰ)知AO⊥平面EFCB,
∵OG?平面EFCB,∴OA⊥OG,
建立如图的空间坐标系,
则OE=a,BG=2,GH=a,(a≠2),BH=2-a,EH=BHtan60°=$\sqrt{3}(2-a)$,
则E(a,0,0),A(0,0,$\sqrt{3}$a),B(2,$\sqrt{3}(2-a)$,0),
$\overrightarrow{EA}$=(-a,0,$\sqrt{3}$a),$\overrightarrow{BE}$=(a-2,-$\sqrt{3}(2-a)$,0),
设平面AEB的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-ax+\sqrt{3}az=0}\\{(a-2)x+\sqrt{3}(a-2)y=0}\end{array}\right.$,
令z=1,则x=$\sqrt{3}$,y=-1,
即$\overrightarrow{n}$=($\sqrt{3}$,-1,1),
平面AEF的法向量为$\overrightarrow{m}=(0,1,0)$,
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$-\frac{\sqrt{5}}{5}$
即二面角F-AE-B的余弦值为$-\frac{\sqrt{5}}{5}$;
(Ⅲ)若BE⊥平面AOC,
则BE⊥OC,
即$\overrightarrow{BE}•\overrightarrow{OC}$=0,
∵$\overrightarrow{BE}$=(a-2,-$\sqrt{3}(2-a)$,0),$\overrightarrow{OC}$=(-2,$\sqrt{3}(2-a)$,0),
∴$\overrightarrow{BE}•\overrightarrow{OC}$=-2(a-2)-3(a-2)2=0,
解得a=$\frac{4}{3}$.

点评 本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数a,b,c满足$\frac{1}{4}$a2+$\frac{1}{4}$b2+c2=1,则ab+2bc+2ca的取值范围是(  )
A.(-∞,4]B.[-4,4]C.[-2,4]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.执行如图所示的程序框图(算法流程图),输出的n为4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(  )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知样本数据 x1,x2,…,xn的均值$\overline{x}$=5,则样本数据 2x1+1,2x2+1,…,2xn+1 的均值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,输出的k值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),}&{x<1}\\{{2}^{x-1},}&{x≥1}\end{array}\right.$,则f(-2)+f(log212)=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知向量$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值.

查看答案和解析>>

同步练习册答案