分析 (Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.
(Ⅱ)建立空间坐标系,利用向量法即可求二面角F-AE-B的余弦值;
(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值
解答 证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,
∴AO⊥EF,
∵平面AEF⊥平面EFCB,AO?平面AEF,
∴AO⊥平面EFCB
∴AO⊥BE.
(Ⅱ)取BC的中点G,连接OG,
∵EFCB是等腰梯形,
∴OG⊥EF,
由(Ⅰ)知AO⊥平面EFCB,
∵OG?平面EFCB,∴OA⊥OG,
建立如图的空间坐标系,
则OE=a,BG=2,GH=a,(a≠2),BH=2-a,EH=BHtan60°=$\sqrt{3}(2-a)$,
则E(a,0,0),A(0,0,$\sqrt{3}$a),B(2,$\sqrt{3}(2-a)$,0),
$\overrightarrow{EA}$=(-a,0,$\sqrt{3}$a),$\overrightarrow{BE}$=(a-2,-$\sqrt{3}(2-a)$,0),
设平面AEB的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EA}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-ax+\sqrt{3}az=0}\\{(a-2)x+\sqrt{3}(a-2)y=0}\end{array}\right.$,![]()
令z=1,则x=$\sqrt{3}$,y=-1,
即$\overrightarrow{n}$=($\sqrt{3}$,-1,1),
平面AEF的法向量为$\overrightarrow{m}=(0,1,0)$,![]()
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$-\frac{\sqrt{5}}{5}$
即二面角F-AE-B的余弦值为$-\frac{\sqrt{5}}{5}$;
(Ⅲ)若BE⊥平面AOC,
则BE⊥OC,
即$\overrightarrow{BE}•\overrightarrow{OC}$=0,
∵$\overrightarrow{BE}$=(a-2,-$\sqrt{3}(2-a)$,0),$\overrightarrow{OC}$=(-2,$\sqrt{3}(2-a)$,0),
∴$\overrightarrow{BE}•\overrightarrow{OC}$=-2(a-2)-3(a-2)2=0,
解得a=$\frac{4}{3}$.
点评 本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | [-4,4] | C. | [-2,4] | D. | [-1,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 消耗1升汽油,乙车最多可行驶5千米 | |
| B. | 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 | |
| C. | 甲车以80千米/小时的速度行驶1小时,消耗10升汽油 | |
| D. | 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com