精英家教网 > 高中数学 > 题目详情
17.如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为$\frac{2}{5}$.

分析 首先以AB,AD,AQ三直线为x,y,z轴,建立空间直角坐标系,并设正方形边长为2,M(0,y,2),从而可求出向量$\overrightarrow{EM},\overrightarrow{AF}$的坐标,由cosθ=$|cos<\overrightarrow{EM},\overrightarrow{AF}>|$得到$cosθ=\frac{2-y}{\sqrt{5}•\sqrt{{y}^{2}+5}}$,对函数$\frac{2-y}{\sqrt{5}•\sqrt{{y}^{2}+5}}$求导,根据导数符号即可判断该函数为减函数,从而求出cosθ的最大值.

解答 解:根据已知条件,AB,AD,AQ三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设AB=2,则:
A(0,0,0),E(1,0,0),F(2,1,0);
M在线段PQ上,设M(0,y,2),0≤y≤2;
∴$\overrightarrow{EM}=(-1,y,2),\overrightarrow{AF}=(2,1,0)$;
∴cosθ=$|cos<\overrightarrow{EM},\overrightarrow{AF}>|$=$\frac{2-y}{\sqrt{{y}^{2}+5}•\sqrt{5}}$;
设f(y)=$\frac{2-y}{\sqrt{{y}^{2}+5}•\sqrt{5}}$,$f′(y)=\frac{-2y-5}{\sqrt{5}({y}^{2}+5)\sqrt{{y}^{2}+5}}$;
函数g(y)=-2y-5是一次函数,且为减函数,g(0)=-5<0;
∴g(y)<0在[0,2]恒成立,∴f′(y)<0;
∴f(y)在[0,2]上单调递减;
∴y=0时,f(y)取到最大值$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 考查建立空间直角坐标系,利用空间向量解决异面直线所成角的问题,异面直线所成角的概念及其范围,向量夹角的概念及其范围,以及向量夹角余弦的坐标公式,函数导数符号和函数单调性的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,若a21+a1000+a2000=30,a1、a2013为方程x2-ax+20=0的两根,则a=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知随机变量X的分布列如下:
X-2-1012
P$\frac{1}{4}$ $\frac{1}{3}$  $\frac{1}{5}$ m$\frac{1}{20}$ 
(1)求m的值;
(2)求E(X);
(3)若Y=2X-3,求E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某三棱锥的三视图如图所示,则该三棱锥的表面积是(  )
A.2+$\sqrt{5}$B.4+$\sqrt{5}$C.2+2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$,),k∈zB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈z
C.(k-$\frac{1}{4}$,k+$\frac{3}{4}$),k∈zD.($2k-\frac{1}{4}$,2k+$\frac{3}{4}$),k∈z

查看答案和解析>>

同步练习册答案