精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),}&{x<1}\\{{2}^{x-1},}&{x≥1}\end{array}\right.$,则f(-2)+f(log212)=(  )
A.3B.6C.9D.12

分析 先求f(-2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.

解答 解:函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,
即有f(-2)=1+log2(2+2)=1+2=3,
f(log212)=${2}^{lo{g}_{2}12-1}$=12×$\frac{1}{2}$=6,
则有f(-2)+f(log212)=3+6=9.
故选C.

点评 本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知随机变量X的分布列如下:
X-2-1012
P$\frac{1}{4}$ $\frac{1}{3}$  $\frac{1}{5}$ m$\frac{1}{20}$ 
(1)求m的值;
(2)求E(X);
(3)若Y=2X-3,求E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE⊥平面AOC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.
(Ⅰ)用球的标号列出所有可能的摸出结果;
(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(2)$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$是|a-b|<|c-d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$,),k∈zB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈z
C.(k-$\frac{1}{4}$,k+$\frac{3}{4}$),k∈zD.($2k-\frac{1}{4}$,2k+$\frac{3}{4}$),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是(  )
A.?x0∈(0,+∞),lnx0≠x0-1B.?x0∉(0,+∞),lnx0=x0-1
C.?x∈(0,+∞),lnx≠x-1D.?x∉(0,+∞),lnx=x-1

查看答案和解析>>

同步练习册答案