| A. | $\frac{2}{n+1}$ | B. | $\frac{2}{n+2}$ | C. | ($\frac{2}{3}$)n | D. | ($\frac{2}{3}$)n-1 |
分析 由数列{an}满足a1=1,且2an-1-2an=anan-1(n≥2),可得:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{1}{2}$,利用等差数列的通项公式即可得出.
解答 解:∵数列{an}满足a1=1,且2an-1-2an=anan-1(n≥2),
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=$\frac{1}{2}$,$\frac{1}{{a}_{1}}$=1.
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,公差为$\frac{1}{2}$,首项为1.
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$.
故选:A.
点评 本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com