精英家教网 > 高中数学 > 题目详情
13.已知斜三棱柱ABC-A1B1C1,所有棱长均为2,若点A1在底面ABC的射影O落在AB的中点M上.
(1)在线段A1C1上找到一点N,使得MN∥面B1C1CB,求A1N的长度;
(2)求四棱锥体积VA-BB1C1C

分析 (1)取A1C1中点N,B1C1的中点E,连结BE,EN,由三角形中位线定理可得EN∥A1B1,结合三棱柱的性质可得A1B1∥BM,再由边长相等可得四边形ENBM为平行四边形,由此证得MN∥面B1C1CB,此时A1N=1;
(2)求出三棱柱ABC-A1B1C1的体积,再求出三棱锥A-A1B1C1的体积,则由${V_{A-B{B_1}{C_1}C}}$=${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$$-{V}_{A-{A}_{1}{B}_{1}{C}_{1}}$ 得答案.

解答 解:(1)取A1C1中点N,则A1N=1,
取B1C1的中点为E,连结BE,EN则EN∥A1B1
又A1B1∥BM,∴EN∥BM,且$EN=\frac{1}{2}{A}_{1}{B}_{1}=BM$,
∴四边形ENBM为平行四边形,
∴有MN∥BE,即MN∥面B1C1CB,此时A1N=1;
(2)∵${S}_{△ABC}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$,${A}_{1}M=\sqrt{3}$,
∴${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=${S}_{△ABC}•{A}_{1}M=\sqrt{3}×\sqrt{3}=3$,
${V}_{A-{A}_{1}{B}_{1}{C}_{1}}=\frac{1}{3}{S}_{△{A}_{1}{B}_{1}{C}_{1}}•{A}_{1}M$=$\frac{1}{3}×\sqrt{3}×\sqrt{3}=1$,
∴${V_{A-B{B_1}{C_1}C}}$=${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$$-{V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=3-1=2.

点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F,以F为圆心的圆与双曲线的两条渐近线分别相切于A、B两点,且|AB|=$\sqrt{3}$b,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.画h(x)=$\frac{1}{x}$-2x-2大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a∈R,已知函数f(x)=ax3-3x2
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若对任意的x∈[1,3],有f(x)+f′(x)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)从C2上任意一点P作曲线C1的切线,设切点为Q,求切线长PQ的最小值及此时点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,从这10个数中随机抽取一个数,事件A=“抽取出的数小于8”,事件B=“抽取出的数是正数”,则P(B|A)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数y=sin(2ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象与x轴交点的横坐标为A,B,已知|A-B|的最小值是$\frac{π}{3}$,图象过点($\frac{π}{4}$,1).
(1)求ω和φ;
(2)该函数图象是由y=sinx的图象怎样变换得到的?
(3)若函数f(x)满足f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动点Q与两定点(-$\sqrt{2}$,0),($\sqrt{2}$,0)连线的斜率的乘积为-$\frac{1}{2}$,点Q形成的轨迹为M.
(Ⅰ)求轨迹M的方程;
(Ⅱ)过点P(-2,0)的直线l交M于A、B两点,且$\overrightarrow{PB}$=3$\overrightarrow{PA}$,平行于AB的直线与M位于x轴上方的部分交于C、D两点,过C、D两点分别作CE、DF垂直x轴于E、F两点,求四边形CEFD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=$\frac{y-1}{x+3}$的最大值是(  )
A.2B.3C.-$\frac{2}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

同步练习册答案