分析 (I)曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),消去参数可得:$(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}$=1.曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$,化为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)=8$,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出.
(II)如图所示,过圆心C1作C1P⊥直线C2,垂足为点P,此时切线长PQ最小.利用点到直线的距离公式可得|C1P|.|PQ|=$\sqrt{|{C}_{1}P{|}^{2}-{r}^{2}}$,直线C1P的方程为:y=x,联立$\left\{\begin{array}{l}{y=x}\\{x+y-8\sqrt{2}=0}\end{array}\right.$,解得P,利用$\left\{\begin{array}{l}{ρ=\sqrt{{x}^{2}+{y}^{2}}}\\{tanθ=\frac{y}{x}}\end{array}\right.$即可得出P极坐标.
解答 解:(I)曲线C1的方程$\left\{\begin{array}{l}{x=\sqrt{2}+cosa}\\{y=\sqrt{2}+sina}\end{array}\right.$(a为参数),消去参数可得:$(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}$=1.![]()
曲线C2的方程:ρ=$\frac{8}{sin(θ+\frac{π}{4})}$,化为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)=8$,∴x+y-8$\sqrt{2}$=0
(II)如图所示,过圆心C1作C1P⊥直线C2,垂足为点P,此时切线长PQ最小.
|C1P|=$\frac{|\sqrt{2}+\sqrt{2}-8\sqrt{2}|}{\sqrt{2}}$=6.
∴|PQ|=$\sqrt{|{C}_{1}P{|}^{2}-{r}^{2}}$=$\sqrt{{6}^{2}-{1}^{2}}$=$\sqrt{35}$,
直线C1P的方程为:y=x,
联立$\left\{\begin{array}{l}{y=x}\\{x+y-8\sqrt{2}=0}\end{array}\right.$,解得x=y=4$\sqrt{2}$.
∴P$(4\sqrt{2},4\sqrt{2})$,
∴$ρ=\sqrt{(4\sqrt{2})^{2}+(4\sqrt{2})^{2}}$=8,
$tanθ=\frac{4\sqrt{2}}{4\sqrt{2}}$=1,θ=$\frac{π}{4}$.
∴P$(8,\frac{π}{4})$.
点评 本题考查了直线的极坐标方程化为直角坐标方程、圆的参数方程化为普通方程、直线与圆的位置关系、点到直线的距离公式、勾股定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -11 | B. | 3 | C. | 9 | D. | 9或-11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | E(2X-1)=2np | B. | D(2X+1)=4np(1-p)+1 | C. | E(2X+1)=4np+1 | D. | D(2X-1)=4np(1-p) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com