精英家教网 > 高中数学 > 题目详情
3.求定积分$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$.

分析 方法一:将被积函数裂项,根据定积分的运算,即可求得答案.
方法二:化简,$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$=${∫}_{1}^{2}$$\frac{d(x-1)}{(x-1)^{2}-{2}^{2}}$,利用不定积分公式,求得原函数,代入即可求得答案.

解答 解:方法一:$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$=${∫}_{1}^{2}$$\frac{1}{(x+1)(x-3)}$dx=${∫}_{1}^{2}$$\frac{1}{4}$($\frac{1}{x-3}$-$\frac{1}{x+1}$)dx=$\frac{1}{4}$(${∫}_{1}^{2}$$\frac{1}{x-3}$dx-${∫}_{1}^{2}$$\frac{1}{x+1}$dx)=$\frac{1}{4}$[${∫}_{1}^{2}$$\frac{1}{3-x}$d(3-x)-${∫}_{1}^{2}$$\frac{1}{x+1}$d(x+1)],
=$\frac{1}{4}$[ln(3-x)${丨}_{1}^{2}$-ln(x+1)${丨}_{1}^{2}$]=$\frac{1}{4}$[ln(3-2)-ln(3-1)-ln(2+1)+ln(1+1)],
=-$\frac{ln3}{4}$,
∴$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$=-$\frac{ln3}{4}$,
方法二:$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$=${∫}_{1}^{2}$$\frac{1}{(x-1)^{2}-4}$dx=${∫}_{1}^{2}$$\frac{1}{(x-1)^{2}-4}$dx=${∫}_{1}^{2}$$\frac{d(x-1)}{(x-1)^{2}-4}$=${∫}_{1}^{2}$$\frac{d(x-1)}{(x-1)^{2}-{2}^{2}}$=($\frac{1}{4}$ln丨$\frac{2-(x-1)}{2+(x-1)}$丨)${丨}_{1}^{2}$=($\frac{1}{4}$ln丨$\frac{3-x}{1+x}$丨)${丨}_{1}^{2}$=$\frac{1}{4}$(-ln3-ln1)=-$\frac{ln3}{4}$,
∴$∫\underset{\stackrel{2}{\;}}{1}\frac{dx}{{x}^{2}-2x-3}$=-$\frac{ln3}{4}$,
利用不定积分∫$\frac{dx}{{x}^{2}-{a}^{2}}$=$\frac{1}{2a}$ln丨$\frac{a-x}{a+x}$丨+C,

点评 本题考查定积分的计算,考查求原函数的方程,考查求原函数的公式,考查裂项法被奇函数的原函数,是大学高数的方法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某省组织了一次高考模拟考试,该省教育部门抽取了1000名考生的数学考试成绩,并绘制成频率分布直方图如图所示.
(Ⅰ)求样本中数学成绩在95分以上(含95分)的学生人数;
(Ⅱ)已知本次模拟考试全省考生的数学成绩X~N(μ,σ2),其中μ近似为样本的平均数,σ2近似为样本方差,试估计该省的所有考生中数学成绩介于100~138.2分的概率;
(Ⅲ)以频率估计概率,若从该省所有考生中随机抽取4人,记这4人中成绩在[105,125)内的人数为X,求X的分布列及数学期望.
参考数据:$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p,q,“¬p为假”是“p∨q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是(  )
A.90B.45C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.幂函数f(x)=${x^{{m^2}+5m+4}}({m∈Z})$是偶函数且在(0,+∞)上单调递减,则m的值为-3或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{2{x}^{2}-lnx,x>0}\end{array}\right.$,若函数y=f(x)-a恰有一个零点,则a的取值范围是[0,$\frac{1}{2}$-ln$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=si{n}^{2}α}\end{array}\right.$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2:ρcos(θ-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,C3:ρ=2sinθ
(1)求曲线C1与C2的交点M在直角坐标系xoy中的坐标;
(2)设点A,B分别为曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②④.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能构成一个三角形的三条边长;
③若△ABC为直角三角形,对于?n∈N*,f(2n)>0恒成立.
④若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

同步练习册答案