精英家教网 > 高中数学 > 题目详情
1.如图,设$\overrightarrow{a}$=$\overrightarrow{OA}$=3$\overrightarrow{OC}$,$\overrightarrow{b}$=$\overrightarrow{OB}$=4$\overrightarrow{OD}$,且$\overrightarrow{a}$与$\overrightarrow{b}$不共线,AD与BC交于点E,试用$\overrightarrow{a}$与$\overrightarrow{b}$表示$\overrightarrow{OE}$.

分析 根据A,D,E三点共线,B,C,E三点共线列出方程求出$\overrightarrow{CE}$,得出$\overrightarrow{OE}=\overrightarrow{OC}+\overrightarrow{CE}$.

解答 解:$\overrightarrow{CB}=\overrightarrow{CO}+\overrightarrow{OB}$=-$\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{DA}=\overrightarrow{DO}+\overrightarrow{OA}$=-$\frac{1}{4}$$\overrightarrow{b}$+$\overrightarrow{a}$,
设$\overrightarrow{CE}$=λ$\overrightarrow{CB}$=-$\frac{λ}{3}$$\overrightarrow{a}$+λ$\overrightarrow{b}$,则$\overrightarrow{EA}$=$\overrightarrow{CA}-\overrightarrow{CE}$=$\frac{2+λ}{3}$$\overrightarrow{a}$-λ$\overrightarrow{b}$.
∵A,D,E三点共线,∴存在k≠0,使得$\overrightarrow{EA}=k\overrightarrow{DA}$,
∴$\left\{\begin{array}{l}{\frac{2+λ}{3}=k}\\{-λ=-\frac{k}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{2}{11}}\\{k=\frac{8}{11}}\end{array}\right.$,∴$\overrightarrow{CE}$=-$\frac{2}{33}$$\overrightarrow{a}$+$\frac{2}{11}$$\overrightarrow{b}$.
∴$\overrightarrow{OE}=\overrightarrow{OC}+\overrightarrow{CE}$=$\frac{1}{3}\overrightarrow{a}$-$\frac{2}{33}$$\overrightarrow{a}$+$\frac{2}{11}$$\overrightarrow{b}$=$\frac{3}{11}$$\overrightarrow{a}$+$\frac{2}{11}$$\overrightarrow{b}$.

点评 本题考查了平面向量的基本定理,三点共线原理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=$\frac{{x}^{2}+3}{x+1}$,则函数的极值点为1,-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面的一组基底,如果$\overrightarrow{AB}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=4$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=8$\overrightarrow{{e}_{1}}$-9$\overrightarrow{{e}_{2}}$.求证:A,B,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点(b,$\sqrt{2}$a)在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,则双曲线C的渐近线方程为(  )
A.x=±$\sqrt{2}$yB.y=±$\sqrt{2}$xC.y=±2xD.x=±2y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一海轮以20n mi1e/h的速度向正东方向航行,它在A点测得灯塔P在海轮的北偏东60°,2h后海轮到达B点时测得灯塔P在海轮的北偏东45°,则B点到灯塔P的距离为20($\sqrt{6}$+$\sqrt{2}$)n mi1e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列6,0,6,0,…的一个通项公式是an=3+3•(-1)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“α=210°”是“sinα<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式ax2+5x-2>0的解集是{x|$\frac{1}{2}$<x<2},则关于x的不等式ax2-5x+a2-1>0的解集为(  )
A.(-∞,-$\frac{3}{2}$)∪(1,+∞)B.(-$\frac{3}{2}$,1)C.(-∞-3)∪($\frac{1}{2}$,+∞)D.(-3,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲罐中有4个红球,3个白球和3个黑球;乙罐中有5个红球,3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1、A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,下列的结论:
①P(B)=$\frac{1}{2}$;
②P(B|A1)=$\frac{6}{11}$;
③事件B与事件A1不相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关,
其中正确结论的序号为②③④.(把正确结论的序号都填上)

查看答案和解析>>

同步练习册答案