精英家教网 > 高中数学 > 题目详情
18.观察下列等式;
12=1,
32=2+3+4,
52=3+4+5+6+7,
72=4+5+6+7+8+9+10,

由此可归纳出一般性的等式:
当n∈N*时,(2n-1)2=n+(n+1)+(n+2)+…+(3n-2).

分析 根据已知中的等式,分析出式子两边数的变化规律,可得结论.

解答 解:由已知中的等式;
12=1,
32=2+3+4,
52=3+4+5+6+7,
72=4+5+6+7+8+9+10,

由此可归纳可得:等式左边是正奇数的平方,即,(2n-1)2
右边是从n开始的2n-1个整数的和,
故第n个等式为:(2n-1)2=n+(n+1)+(n+2)+…+(3n-2),
故答案为:(3n-2).

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求下面函数的最大值.
(1)y=3x-2x2+1;
(2)y=-$\frac{2}{x}$,x∈[-3,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果根据数学成绩是否及格与课后习题练习量的多少列联表,得到K2的观测值k=6.714,则判断数学成绩是否及格与课后习题练习量的多少有关,那么这种判断出错的可能性为(  )
A.10%B.2.5%C.1%D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(t)=t2-t+2.
(1)当t∈R时,求f(t)的值域.
(2)当t∈[-1,2]时,求f(t)的值域.
(3)令t=sinx,求f(sinx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m-1(m>0)的解集为[-2,2],求实数m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z=$\frac{4+bi}{1-i}$(b∈R)的实部为-1,则复数$\overline z$-b在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)证明:数列{${\frac{S_n}{n}}\right.$}是等比数列;
(2)令bn=ln$\frac{a_n}{n}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=xa+ax的导函数f'(x)=2x+2,则数列{${\frac{1}{f(n)}$}的前9项和是(  )
A.$\frac{29}{36}$B.$\frac{31}{44}$C.$\frac{36}{55}$D.$\frac{43}{66}$

查看答案和解析>>

同步练习册答案