精英家教网 > 高中数学 > 题目详情
13.已知f(x)=-$\sqrt{3}$sin2x+sinxcosx,设α∈(0,2π),f($\frac{a}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,求sinα

分析 首先通过三角函数的关系式的恒等变换把函数的关系式变形成正弦型函数,进一步利用已知条件求出$sin(α+\frac{π}{3})=\frac{1}{4}$,最后利用角的恒等变换求出结果.

解答 解:f(x)=-$\sqrt{3}$sin2x+sinxcosx
=-$\sqrt{3}\frac{1-cos2x}{2}+\frac{sin2x}{2}$
=$sin(2x+\frac{π}{3})-\frac{\sqrt{3}}{2}$
由于:f($\frac{a}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,
所以:$sin(α+\frac{π}{3})-\frac{\sqrt{3}}{2}=\frac{1}{4}-\frac{\sqrt{3}}{2}$,
则:$sin(α+\frac{π}{3})=\frac{1}{4}$,
又:0<α<2π,
则:$\frac{π}{3}<α+\frac{π}{3}<\frac{7π}{3}$,
则:$cos(α+\frac{π}{3})=±\frac{\sqrt{15}}{4}$,
sinα=$sin[(α+\frac{π}{3})-\frac{π}{3}]$=sin($α+\frac{π}{3}$)cos$\frac{π}{3}$-cos($α+\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{1±3\sqrt{5}}{8}$

点评 本题考查的知识要点:三角函数关系式的恒等变换,三角函数中的角的恒等变换,及相关的运算问题.主要考查学生的应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且a1=2,an+1=Sn+2,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=n•an,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.菱形的两条对角线分别位于x轴和y轴上,其长度分别为8和6,求菱形各边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,已知∠A=45°,a=10,b=5,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式$\frac{(2-x)(x-5)^{3}}{(x-1)(x-3)^{2}}$≥0的解集(  )
A.{x|x<1,或2≤x<3,或3<x≤5}B.{x|x≤-1,或2<x<5}
C.{x|-1<x≤2,或x>5}D.{x|x<-1,或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知z1、z2是两个虚数,且z1+z2与z1z2均为实数,求证:z1、z2是共轭复数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于任意|m|≤2的实数m,x∈(a,b),x2-mx-3<0恒成立,求b-a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中,a1=1,a2=2,an+2=3an+1-2an,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(x-$\frac{1}{2x}$)6的展开式中常数项为(  )
A.$\frac{15}{16}$B.-$\frac{15}{16}$C.$\frac{5}{2}$D.-$\frac{5}{2}$

查看答案和解析>>

同步练习册答案