精英家教网 > 高中数学 > 题目详情
10.将函数f(x)=tan(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则g($\frac{4π}{3}$)的值是-$\sqrt{3}$.

分析 利用函数y=Asin(ωx+φ)的图象变换规律可得g(x)的解析式,再利用诱导公式求得g($\frac{4π}{3}$)的值.

解答 解:将函数f(x)=tan(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,
得到函数g(x)=tan(2x-$\frac{π}{3}$+$\frac{π}{3}$)=tan2x的图象,
则g($\frac{4π}{3}$)=tan$\frac{8π}{3}$=tan$\frac{2π}{3}$=-tan$\frac{π}{3}$=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$和圆O:x2+y2=b2(其中圆心O为原点),过椭圆C上异于上、下顶点的一点P(x0,y0)引圆O的两条切线,切点分别为A,B.
(1)求直线AB的方程;
(2)求三角形OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,平行四边形ABCD的两条对角线相交于点M,点N为CD的中点.若$\overrightarrow{AB}$=(4,0),$\overrightarrow{AD}=(4,4)$.
(1)求向量$\overrightarrow{AN}$的坐标;
(2)求向量$\overrightarrow{AB}$与向量$\overrightarrow{AM}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x2-|x2-mx-4|(m为常数)x∈[-4,4],f(x)经过点(2,4).
(1)求m的值,并画出f(x)的图象;
(2)求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为仅含cosx的二次多项式.
(1)类比cos2x公式的推导方法,试用仅含有cosx的多项式表示cos3x;
(2)已知3×18°=90°-2×18°,试结合第(1)问的结论,求出sin18°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知变换T把平面上的点A(2,0),B(0,$\sqrt{3}$)分别变换成点A'(2,2),B'(-$\sqrt{3}$,$\sqrt{3}$).
(1)试求变换T对应的矩阵M;
(2)若曲线C在变换T的作用下所得到的曲线的方程为x2-y2=4,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a是实数,$\frac{a-i}{1+i}$是纯虚数,则a=(  )
A.-1+2iB.1C.3D.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“因为e=2.71828…是无限不循环小数,所以e是无理数”,以上推理的大前提是(  )
A.实数分为有理数和无理数B.e不是有理数
C.无限不循环小数都是无理数D.无理数都是无限不循环小数

查看答案和解析>>

同步练习册答案