分析 利用函数y=Asin(ωx+φ)的图象变换规律可得g(x)的解析式,再利用诱导公式求得g($\frac{4π}{3}$)的值.
解答 解:将函数f(x)=tan(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,
得到函数g(x)=tan(2x-$\frac{π}{3}$+$\frac{π}{3}$)=tan2x的图象,
则g($\frac{4π}{3}$)=tan$\frac{8π}{3}$=tan$\frac{2π}{3}$=-tan$\frac{π}{3}$=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 实数分为有理数和无理数 | B. | e不是有理数 | ||
| C. | 无限不循环小数都是无理数 | D. | 无理数都是无限不循环小数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com