精英家教网 > 高中数学 > 题目详情
19.已知a是实数,$\frac{a-i}{1+i}$是纯虚数,则a=(  )
A.-1+2iB.1C.3D.3-2i

分析 利用复数代数形式的乘除运算法则求出$\frac{a-i}{1+i}$=$\frac{a-1}{2}-\frac{a+i}{2}i$,由此利用a是实数,$\frac{a-i}{1+i}$是纯虚数,能求出a.

解答 解:$\frac{a-i}{1+i}$=$\frac{(a-i)(1-i)}{(1+i)(1-i)}$=$\frac{a-i-ai+{i}^{2}}{1-{i}^{2}}$
=$\frac{a-1}{2}-\frac{a+i}{2}i$,
∵a是实数,$\frac{a-i}{1+i}$是纯虚数,
∴$\left\{\begin{array}{l}{\frac{a-1}{2}=0}\\{-\frac{a+1}{2}≠0}\end{array}\right.$,解得a=1.
故选:B.

点评 本题考查实数值的求法,考查复数代数形式的乘除运算法则、纯虚数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.己知函数f(x)=alnx-$\frac{1}{2}$x2 (a∈R).
(Ⅰ)求a=l时,求f(x)的单调区间;
(Ⅱ)讨论f(x)在定义域上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将函数f(x)=tan(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则g($\frac{4π}{3}$)的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥O-ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,则三棱锥O-ABC体积的最大值为(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$\frac{{9\sqrt{3}}}{2}$C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在棱长为a的正方体ABCD-A1B1C1D1内有一个内切球O,过正方体中两条互为异面直线的AA1,BC的中点P、Q作直线,该直线被球面截在球内的线段的长为(  )
A.$\frac{\sqrt{2}}{2}$aB.$\frac{1}{2}$aC.$\frac{1}{4}$aD.($\sqrt{2}$-1)a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-2<x<5};
(1)若B⊆A,B={x|m+1<x<2m-1},求实数m的取值范围;
(2)若A⊆B,B={x|m-6<x<2m-1},求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知矩阵$A=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}],B=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,设点$P({\frac{7}{4},\frac{5}{2}})$在矩阵BA对应的变换TBA作用下得到P'点,求点P'的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)满足:f(x)=f(x+2),且当x∈[0,2]时,f(x)=(x-1)2,则f($\frac{7}{2}$)等于(  )
A.0B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,高二(1)班有40名同学,一次数学考试的成绩X~N(120,100),理论上说在130分~140分之间的人数约为(  )
A.8B.5C.10D.12

查看答案和解析>>

同步练习册答案