分析 (1)取PC中点N,连结MN,AM,BN,则梯形MNBA即为要求的梯形;
(2)根据面面垂直的性质即可得出AB⊥平面PBC;
(3)作△PBC的中线PE,则M到底面的距离为$\frac{1}{2}PE$,代入体积公式计算.
解答
解:(1)取PC中点N,连结MN,AM,BN,则梯形MNBA为要求的梯形
(2)∵∠ABC=90°,∴AB⊥BC.
∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AB⊥BC,AB?平面ABCD,
∴AB⊥平面PBC.
(3)∵PB=PC=BC=2CD=2,∴△PBC是等边三角形,
过P作PE⊥BC,则PE⊥平面ABCD,且PE=$\sqrt{P{B}^{2}-B{E}^{2}}=\sqrt{3}$.
∴M到平面ACD的距离h=$\frac{1}{2}PE=\frac{\sqrt{3}}{2}$.
∵S△ACD=$\frac{1}{2}×CD×BC$=1.
∴三棱锥M-ACD的体积V=$\frac{1}{3}{S}_{△ACD}•h$=$\frac{1}{3}×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{6}$.
点评 本题考查了平面的作法,面面垂直的性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 3 | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≤-2} | B. | {x|-2<x≤2} | C. | {x|-2≤x≤3} | D. | {x|-2≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{-\sqrt{3}+2\sqrt{2}}{6}$ | B. | $\frac{\sqrt{3}+2\sqrt{2}}{6}$ | C. | $\frac{-\sqrt{3}±2\sqrt{2}}{6}$ | D. | $\frac{\sqrt{3}±2\sqrt{2}}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com