精英家教网 > 高中数学 > 题目详情
19.已知关于x的方程2sin2x-$\sqrt{3}$sin2x+m-1=0在x∈[0,$\frac{π}{2}$]上有两个不同的实数根,则实数m的取值范围是1≤m<2.

分析 先对三角函数作归一运算,再由x得范围,得到函数图象,由此得到m的范围.

解答 解:2sin2x-$\sqrt{3}$sin2x+m-1=-cos2x-$\sqrt{3}$sin2x+m
=-2sin(2x+$\frac{π}{6}$)+m,
∵x∈[0,$\frac{π}{2}$],
∴(2x+$\frac{π}{6}$)∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴y=-2sin(2x+$\frac{π}{6}$)∈[-2,1],
要使方程2sin2x-$\sqrt{3}$sin2x+m-1=0在x∈[0,$\frac{π}{2}$]上有两个不同的实数根,
得到1≤m<2.
故答案为:1≤m<2.

点评 本题考查三角函数的归一运算以及三角函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$1-\frac{{\sqrt{2}}}{2}$,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且$\overline{AP}=3\overline{PB}$.
(1)求椭圆C的方程;
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,则P(A|B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读右边程序,若输入的a,b值分别为3,-5,则输出的a,b值分别为(  )
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.求下列函数的函数值的算法中需要用到条件结构的是(  )
A.f(x)=x2-1B.f(x)=2x+1
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x>1)}\\{{x}^{2}-1(x≤1)}\end{array}\right.$D.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前项和为${S_n}={n^2}-3n$,则通项公式an等于(  )
A.an=2n-3B.an=2n-4C.an=3-3nD.an=2n-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(x+1),$g(x)=a+bx-\frac{1}{2}{x^2}+\frac{1}{3}{x^3}$,函数y=f(x)与函数y=g(x)的图象在交点(0,0)处有公共切线.
(1)求a,b的值;       
(2)证明:f(x)≤g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex,g(x)=lnx+m.
(1)当m=-1时,求函数F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的极值;
(2)若m=2,求证:当x∈(0,+∞)时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(1,0)处的切线方程;
(2)如果过点(1,b)可作曲线y=f(x)的三条切线,求实数b的取值范围.

查看答案和解析>>

同步练习册答案