精英家教网 > 高中数学 > 题目详情
设椭圆M:
x2
a2
+
y2
2
=1(a>2)的右焦点为F1,直线l:x=
a2
a2-2
与x轴交于点A,若
OF1
=2
F1A
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由题设知
a2-2
=2(
a2
a2-2
-
a2-2
),由此能求出椭圆方程.
(2)由x2+(y-2)2=1,得圆心N(0,2),由已知条件得
PE
PF
=
NP
2
-1,从而求
PE
PF
的最大值转化为求
NP
2
的最大值,由此能求出
PE
PF
的最大值为11.
解答: 解:(1)由题设知A(
a2
a2-2
,0),F1
a2-2
,0),
OF1
=2
F1A
,得
a2-2
=2(
a2
a2-2
-
a2-2
),
解得a2=6,
∴椭圆方程为M:
x2
6
+
y2
2
=1

(2)由x2+(y-2)2=1,得圆心N(0,2),
PE
PF
=(
NE
-
NP
)•(
NF
-
NP
)=(-
NF
-
NP
)•(
NF
-
NP
)=
NP
2
-
NF
2
=
NP
2
-1

从而求
PE
PF
的最大值转化为求
NP
2
的最大值,…(7分)
∵P是椭圆M上的任意一点,设P(x0,y0),
x02
6
+
y02
2
=1
,即
x
2
0
=6-3
y
2
0

∵点N(0,2),
NP
2
=
x
2
0
+(y0-2)2=-2(y0+1)2+12
,…(10分)
y0∈[-
2
2
]

∴当y0=-1时,
NP
2
取得最大值12,
PE
PF
的最大值为11.…(12分)
点评:本题考查椭圆方程的求法,考查向量的数量积的最大值的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,下列关于
AC1
的表达中错误的一个是(  )
A、
AA1
+
A1B1
+
A1D1
B、
AB
+
DD1
+
D1C1
C、
AD
+
CC1
+
D1C1
D、
1
2
AB1 
+
CD1
)+
A1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=CD,AB=4,BC=3,E是PD的中点.
(1)证明:PB∥平面ACE
(2)若Q为直线PB上任意一点,求几何体Q-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:内接于⊙O的△ABC的两条高线AD、BE相交于点H,过圆心O作OF⊥BC于 F,连接AF交OH于点G,并延长CO交圆于点I.
(1)若
OF
AH
,试求λ的值;
(2)若
CH
=x
OA
+y
OB
,试求x+y的值;
(3)若O为原点,点B的坐标为(-4,-3),点C的坐标为C(4,-3),试求点G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,点M是BC的中点,设
AB
=
a
AC
=
b
,点N在AC上,且AN=2NC,AM与BN相交于点P,AP=λAM,求
(1)λ的值;
(2)用
a
b
表示
AP

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列前n项和Sn=2n2-3n,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线E的两个焦点坐标是F1(-
2
,0),F2
2
,0),且离心率为e=
2

(Ⅰ)求曲线E的方程;
(Ⅱ)设曲线E表示曲线E的y轴左边部分,若直线y=kx-1与曲线E相交于A,B两点,求k的取值范围;
(Ⅲ)在条件(Ⅱ)下,如果|
AB
|=6
3
,且曲线E上存在点C,使
OA
+
OB
=m
OC
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,m>0,求证:
a+m
b+m
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,
AB
=
a
AC
=
b
AD
=3
DB
,则
CD
=
 
(用
a
b
表示)

查看答案和解析>>

同步练习册答案