精英家教网 > 高中数学 > 题目详情
如图所示,在△ABC中,点M是BC的中点,设
AB
=
a
AC
=
b
,点N在AC上,且AN=2NC,AM与BN相交于点P,AP=λAM,求
(1)λ的值;
(2)用
a
b
表示
AP
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:(1)由点M是BC的中点,利用向量平行四边形法则可得:
AM
=
1
2
AB
+
AC
),因此
AP
=
λ
2
AB
+
λ
2
AC
,由B、P、N三点共线,利用向量共线定理可得
AP
=k
AB
+(1-k)
AN
=k
AB
+
2
3
(1-k)
AC
,再利用共面向量基本定理即可得出.
(2)利用(1)即可得出.
解答: 解:(1)∵∴
AM
=
1
2
AB
+
AC
),
AP
=
λ
2
AB
+
λ
2
AC

∵B、P、N三点共线,
AP
=k
AB
+(1-k) 
AN
=k
AB
+
2
3
(1-k) 
AC

λ
2
=k,
λ
2
=
2
3
(1-k)
∴λ=
4
5

(2)由(1)可得
AP
=
λ
2
AB
+
λ
2
AC
=
2
5
a
+
2
5
b
点评:本题考查了向量平行四边形法则、向量共线定理、共面向量基本定理,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知ab>0,且
b
a
+
a
b
≥m恒成立,则m的取值范围是(  )
A、{2}
B、[2,+∞)
C、(-∞,2]
D、[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,且a2n+an=2Sn
(1)求a1
(2)求数列{an}的通项;
(3)若bn=
1
an2
(n∈N*),Tn=b1+b2+…bn,求证:Tn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

从10位学生中选出5人参加数学竞赛.
(1)甲必须选入的有多少种不同的选法?
(2)甲、乙、丙不能同时都入选的有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两顶点B(1,0)和C(-1,0),两边AB、AC所在直线的斜率之积是-2.
(1)求顶点A的轨迹Q;
(2)若不经过点B、C的直线l与轨迹Q只有一个公共点,且公共点在第一象限,试求直线l与两坐标轴围成的三角形面积的最小值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆M:
x2
a2
+
y2
2
=1(a>2)的右焦点为F1,直线l:x=
a2
a2-2
与x轴交于点A,若
OF1
=2
F1A
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωxcosωx-cos2ωx(ω>0)的周期为
π
2

(1)求ω的值和f(x)的单调递增区间;
(2)设△ABC的三边a,b,c成等比数列,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},公差d>0,前n项和为Sn,S3=12,且满足a3-a1,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足2an+1-an=2nbnSn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点.
(Ⅰ)若椭圆上的点A(1,
3
2
)到点F1、F2的距离之和等于4,求椭圆C的方程;
(Ⅱ)直线过F2斜率为
1
2
,交椭圆于A、B两点,求|AB|的长.

查看答案和解析>>

同步练习册答案