精英家教网 > 高中数学 > 题目详情
已知等差数列{an},公差d>0,前n项和为Sn,S3=12,且满足a3-a1,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足2an+1-an=2nbnSn,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用S3=12,求出a2=4,由a3-a1,a4,a8成等比数列,可得2d•(4+6d)=(4+2d)2,求出d,即可求数列{an}的通项公式;
(Ⅱ)求出数列{bn}的通项,利用裂项法,求前n项和Tn
解答: 解:(Ⅰ)∵S3=12,∴a2=4,
∵a3-a1,a4,a8成等比数列,
∴2d•(4+6d)=(4+2d)2
∴d=2或d=-1,
∵d>0,
∴d=2,
,∴数列{an}的通项公式an=2n;
(Ⅱ)∵2an+1-an=2nbnSn
∴bn=2[
1
2n-1•n
-
1
2n•(n+1)
],
∴Tn=2[(
1
20•1
-
1
21•2
)+(
1
21•2
-
1
22•3
)+…+(
1
2n-1•n
-
1
2n•(n+1)
)]=2[1-
1
2n•(n+1)
]
=2-
1
2n-1•(n+1)
点评:本题考查等差数列的性质,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知极坐标的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合,且长度单位相同,圆C的参数方程为
x=1+2cosα
y=
3
+2sinα
(α为参数),点Q的极坐标为(4,-
3
).
(Ⅰ)写出圆C的直角坐标方程和极坐标方程;
(Ⅱ)已知点P是圆C上的任意一点,求P,Q两点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,点M是BC的中点,设
AB
=
a
AC
=
b
,点N在AC上,且AN=2NC,AM与BN相交于点P,AP=λAM,求
(1)λ的值;
(2)用
a
b
表示
AP

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线E的两个焦点坐标是F1(-
2
,0),F2
2
,0),且离心率为e=
2

(Ⅰ)求曲线E的方程;
(Ⅱ)设曲线E表示曲线E的y轴左边部分,若直线y=kx-1与曲线E相交于A,B两点,求k的取值范围;
(Ⅲ)在条件(Ⅱ)下,如果|
AB
|=6
3
,且曲线E上存在点C,使
OA
+
OB
=m
OC
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为原点O,长轴长为4
2
,一条准线的方程为y=
8
7
7

(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线y=2
2
x(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A,B两点(A,B两点异于M).求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>0,m>0,求证:
a+m
b+m
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,满足:Sn=
3
2
(an-1),数列{bn}的前n项和为Tn,满足:Tn=2n2+5n.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若把数列{an},{bn}的公共项从小到大的顺序排成一数列{tn}(不需证明),求使得不等式3log3tn>Tn成立的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“解方程(
3
5
x+(
4
5
x=1”有如下思路:构造函数f(x)=(
3
5
x+(
4
5
x,易知f(x)在R上单调递减,且f(2)=1,故原方程有唯一解x=2,类比上述解题思路,不等式x6-(x+2)>(x+2)3-x2的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在α∈[0,π]时,方程sinα-
3
cosα=m-1有两不等实根,则这两根之和为
 

查看答案和解析>>

同步练习册答案