精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,则不等式f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$的解集为(  )
A.[$\frac{1}{2}$,+∞)B.[2,+∞)C.(0,2]D.[$\frac{1}{2}$,2]

分析 先判断函数f(x)的奇偶性和单调性质,再原不等式转化为log2x≥1,解得即可.

解答 解:f(-x)=-$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$=-f(x),
∴f(log2x)-f(log${\;}_{\frac{1}{2}}$x)=f(log2x)-f(-log2x)=2f(log2x),
∵f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$,
∴f(log2x)≥$\frac{{e}^{2}-1}{{e}^{2}+1}$=$\frac{e-{e}^{-1}}{e+{e}^{-1}}$=f(1),
∵f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$=1-$\frac{2{e}^{-x}}{{e}^{x}+{e}^{-x}}$=1-$\frac{2}{{e}^{2x}+1}$为增函数,
∴log2x≥1=log22,
∴x≥2
故选:B.

点评 本题考查了奇偶性和单调性,以及对数函数的性质和不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若$a=1,b=\sqrt{3},A+C=2B$,则△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某程序框图如图所示,运行该程序,那么输出k的值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知倾斜角为θ的直线,与直线x-3y+1=0垂直,则tanθ=(  )
A.$\frac{1}{3}$B.3C.-3D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的通项公式${a_n}=3n-1(n∈{N^*})$.设数列{bn}为等比数列,且${b_n}={a_{k_n}}$.
(Ⅰ)若b1=a1=2,且等比数列{bn}的公比最小,
(ⅰ)写出数列{bn}的前4项;
(ⅱ)求数列{kn}的通项公式;
(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{bn}有无数多个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某程序框图如图所示,若输出S=$\frac{4}{3}$,则判断框中M为(  )
A.k<7?B.k≤6?C.k≤8?D.k<8?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是(  )
A.P=lg(1+$\frac{1}{d}$)B.P=$\frac{1}{d+2}$C.P=$\frac{{(d-5)}^{2}}{120}$D.P=$\frac{3}{5}$×$\frac{1}{{2}^{d}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow{b}$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)
(])若$\overrightarrow{a}$与$\overrightarrow{b}$-2$\overrightarrow{c}$垂直,求tan(α+β)的值;
(2)求|$\overrightarrow{b}$+$\overrightarrow{c}$|的最大值;
(3)若tanαtanβ=16,求证:$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知2a+b=2,求f(x)=4a+2b的最值,及此时a,b的值.

查看答案和解析>>

同步练习册答案