精英家教网 > 高中数学 > 题目详情
9.已知集合A={-1,1,2,4},B={-1,0,2},则A∩B={-1,2}.

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={-1,1,2,4},B={-1,0,2},
∴A∩B={-1,2},
故答案为:{-1,2}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务.现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取法种数是115.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于x的一元二次方程x2-(m-2)x+m-2=0有两个不相等的实数根,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:

(1)根据以上两个直方图完成下面的2×2列联表:
成绩性别优秀不优秀总计
男生
女生
总计
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d为样本容量
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
(3)若从成绩在[130,140]的学生中任取2人,设取到的2人中女生的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若命题$P:?x∈R,x_0^2+2{x_0}+3≤0$,则命题P的否定¬P是?x∈R,x2+2x+3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知如图所示的多面体EF-ABCD中,四边形ABCD是菱形,四边形BDEF是矩形,ED⊥平面ABCD,∠BAD=$\frac{π}{3}$.若BF=BD=2,则多面体的体积$\frac{8}{3}\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数 $f(x)=\left\{\begin{array}{l}-{x^2},x≥0\\{x^2}+2x,x<0\end{array}\right.$,则f(x)=-1的解是x=±1;不等式 f(f(x))≤3的解集为(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着雾霾日益严重,很多地区都实行了“限行”政策,现从某地区居民中,随机抽取了300名居民了解他们对这一政策的态度,绘成如图所示的2×2列联表:
反对支持合计
男性7060
女性50120
合计
(1)试问有没有99%的把握认为对“限行”政策的态度与性别有关?
(2)用样本估计总体,把频率作为概率,若从该地区所有的居民(人数很多)中随机抽取3人,用ξ表示所选3人中反对的人数,试写出ξ的分布列,并求出ξ的数学期望.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$,其中n=a+b+c+d独立性检验临界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)={x^2}-\frac{{{ln}\left|x\right|}}{x}$,则函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案