精英家教网 > 高中数学 > 题目详情
某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数x,y(x,y∈{1,2,3}),随即按如下所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.
(Ⅰ)已知小曹在第一轮抽奖中被抽中,求小曹在第二轮抽奖中获奖的概率;
(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收入(含门票)的期望.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(Ⅰ)从1,2,3三个数字中有重复取2个数字,列出所有的基本事件共9个,设“小曹在第二轮抽奖中获奖”为事件A,求出事件A所包含的基本事件2个,利用古典概型求出概率即可.
(Ⅱ)设小叶参加此次活动的收益为ξ,ξ的可能取值为-100,900,9900.求出概率,列出分布列,然后利用期望公式求解即可.
解答: 解:(Ⅰ)从1,2,3三个数字中有重复取2个数字,其基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)
共9个,设“小曹在第二轮抽奖中获奖”为事件A,且事件A所包含的基本事件有(3,1),(3,3)共2个,∴P(A)=
2
9

(Ⅱ)设小叶参加此次活动的收益为ξ,ξ的可能取值为-100,900,9900.P(ξ=-100)=
999
1000
P(ξ=900)=
1
1000
7
9
=
7
9000
P(ξ=9900)=
1
1000
2
9
=
2
9000

∴ξ的分布列为
ξ-1009009900
P
999
1000
7
9000
2
9000
Eξ=-100×
999
1000
+900×
7
9000
+9900×
2
9000
=-97
点评:本题考查程序框图的应用,离散型随机变量的分布列以及期望的求法,古典概型概率的求法,是课改地区高考常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一块倾斜放置的矩形木块上钉着一个形如“等腰三角形”的五行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙…第5行6个铁钉之间有5个空隙(如图).某人将一个玻璃球从第1行的空隙向下滚动,玻璃球碰到第2行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙,以后玻璃球按类似方式继续往下滚动,落入第5行的某一个空隙后,掉入木板下方相应的球槽.玻璃球落入不同球槽得到的分数ξ如图所示.
(Ⅰ)求Eξ;
(Ⅱ)若此人进行4次相同试验,求至少3次获得4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若xy≠4,则x≠1或y≠4,命题q:对任意实数x有x2-x+1>0,则(  )
A、“p或¬q”为假命题
B、“¬p且q”为真命题
C、“¬p或q”为假命题
D、“p且q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)(x≠0)在(0,+∞)上为增函数,且f(1)=0.那么不等式f(x-1)<0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=2x-1},集合B={x|y=log3(x2-2)},则集合A∩B=(  )
A、{x|x>1}
B、{x|x<-
2
或x>
2
}
C、{x|x>
2
}
D、{x|x<-
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

设U=R,M={x|x2-x≤0},函数f(x)=
1
x-1
的定义域为N,则M∩(∁UN)=(  )
A、[0,1)B、[0,1]
C、(0,1)D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax,a∈R.
(Ⅰ)若曲线y=f(x)在任意点处的切线的倾斜角都是锐角,求a的取值范围;
(Ⅱ)若函数f(x)在区间(
1
e
,e)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(a+b)x2+(ab-2)x+c
的极大值和极小值点分别为α、β,则a、b、α、β的大小关系可能为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),椭圆过点(0,1)且离心率e=
3
2

(1)求椭圆C的标准方程;
(2)A、B是椭圆上两点,且关于x轴对称,E是椭圆上不同于A、B的一点,且直线BE、AE分别交x轴于点P、Q,求证|OQ|•|OP|是定值.

查看答案和解析>>

同步练习册答案