13£®Èçͼ£ºÔڱ߳¤Îª6Ã׵ĵȱߡ÷ABC¸Ö°åÄÚ£¬×÷Ò»¸ö¡÷DEF£¬Ê¹µÃ¡÷DEFµÄÈý±ßµ½¡÷ABCËù¶ÔÓ¦µÄÈý±ßÖ®¼äµÄ¾àÀë¾ùx£¨0£¼x£¼$\frac{2}{3}$$\sqrt{3}$£©Ã×£¬¹ýµãD·Ö±ðÏòAB£¬AC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪG£¬H£»¹ýµãE·Ö±ðÏòAB£¬BC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪM£¬N£»¹ýµãF·Ö±ðÏòBC£¬AC±ß×÷´¹Ïߣ¬´¹×ãÒÀ´ÎΪR£¬S£®½Ó×ÅÔÚ¡÷ABCµÄÈý¸öÄڽǴ¦£¬·Ö±ðÑØDG£¬DH¡¢EM£¬EN¡¢FR£¬FS½øÐÐÇи¸îÈ¥µÄÈý¸öÈ«µÈµÄСËıßÐηֱðΪAGDH¡¢BMEN¡¢CRFS£®È»ºó°Ñ¾ØÐÎGDEM¡¢NEFR¡¢SFDH·Ö±ðÑØDE¡¢EF¡¢FDÏòÉÏ´¹Ö±·­ÕÛ£¬²¢¶Ô·­ÕÛºóµÄ¸Ö°å½øÐÐÎ޷캸½Ó£¨×¢£ºÇиîºÍÎ޷캸½Ó¹ý³ÌÖеÄËðºÄºÍ·ÑÓúöÂÔ²»¼Æ£©£¬´Ó¶ø¹¹³ÉÒ»¸öÎ޸ǵÄÕýÈýÀâÖùÐîË®³Ø£®
£¨1£©Èô´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³ØµÄ²àÃæºÍµ×ÃæÔì¼Û¾ùΪa£¨a£¾0£©ÍòÔª/Ã×2£¬Çó´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³Ø×ÜÔì¼ÛµÄ×îСֵ£»
£¨2£©Èô´ËÎ޸ǵÄÕýÈýÀâÖùÐîË®³ØµÄÌå»ýΪVÃ×3£¬ÇóÌå»ýVµÄ×î´óÖµ£®

·ÖÎö £¨1£©Á¬½ÓBE£¬Çó³öEN£¬Éè´ËÎ޸dz¤·½ÌåÐîË®³ØµÄ×ÜÔì¼ÛΪy£¨ÍòÔª£©£¬Ð´³öyµÄ±í´ïʽ£¬È»ºóÇó½â×îСֵ£®£¨2£©Ð´³öÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ý£¬ÀûÓù«Ê½µÄµ¼Êý£¬ÅжϺ¯ÊýµÄµ¥µ÷ÐÔÇó½â×îÖµ¼´¿É£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö16·Ö£©
½â£º£¨1£©Á¬½ÓBE£¬ÓÉÌâÒâ¿ÉÖª£¬ÔÚRT¡÷BENÖУ¬
¡ßEN=x£¨Ã×£©£¬¡ÏEBN=30¡ã
¡à$tan{30^0}=\frac{EN}{BN}$£¬¼´$BN=\sqrt{3}x£¨Ã×£©$£¬¡­£¨2·Ö£©
¼´Õý¡÷DEFµÄ±ß³¤Îª$6-2\sqrt{3}x£¨Ã×£©$£¬¡­£¨3·Ö£©
ÈôÉè´ËÎ޸dz¤·½ÌåÐîË®³ØµÄ×ÜÔì¼ÛΪy£¨ÍòÔª£©£¬
Ôò$y=[\frac{{\sqrt{3}}}{4}{£¨6-2\sqrt{3}x£©^2}+3£¨6-2\sqrt{3}x£©•x]•a$£¨$0£¼x¡Ü\frac{{2\sqrt{3}}}{3}$£©¡­£¨5·Ö£©
=[$-3\sqrt{3}{x^2}+9\sqrt{3}$]•a
µ±$x=\frac{{2\sqrt{3}}}{3}£¨m£©$ʱ£¬${y_{min}}=5\sqrt{3}a$£¨ÍòÔª£©
¼´´ËÎ޸dz¤·½ÌåÐîË®³Ø×ÜÔì¼ÛµÄ×îСֵΪ$5\sqrt{3}a$£¨ÍòÔª£©¡­£¨8·Ö£©
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬´ËÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ýΪ£º
$V=\frac{{\sqrt{3}}}{4}{£¨{6-2\sqrt{3}x}£©^2}•x=\sqrt{3}£¨{3{x^3}-6\sqrt{3}{x^2}+9x}£©$£¨$0£¼x¡Ü\frac{{2\sqrt{3}}}{3}$£©£¬¡­£¨10·Ö£©
ÔòV'=$\sqrt{3}£¨{9{x^2}-12\sqrt{3}x+9}£©=3\sqrt{3}£¨{\sqrt{3}x-3}£©£¨{\sqrt{3}x-1}£©$£¬
ÁîV'=0£¬²¢½âÖ®µÃ$x=\frac{{\sqrt{3}}}{3}£¬x=\sqrt{3}∉£¨{0£¬\frac{{2\sqrt{3}}}{3}}]$£¬¡­£¨12·Ö£©
µ±$x¡Ê£¨{0£¬\frac{{\sqrt{3}}}{3}}]$ʱ£¬V'£¾0£¬¼´º¯ÊýV£¨x£©ÔÚ$x¡Ê£¨{0£¬\frac{{\sqrt{3}}}{3}}]$Ϊµ¥µ÷µÝÔöº¯Êý£¬
µ±$x¡Ê[{\frac{{\sqrt{3}}}{3}£¬\frac{{2\sqrt{3}}}{3}}]$ʱ£¬V'£¼0£¬¼´º¯ÊýV£¨x£©ÔÚ$x¡Ê[{\frac{{\sqrt{3}}}{3}£¬\frac{{2\sqrt{3}}}{3}}]$Ϊµ¥µ÷µÝ¼õº¯Êý£¬
Ôòµ±$x=\frac{{\sqrt{3}}}{3}£¨Ã×£©$ʱ£¬${V_{max}}=4£¨{Ã×^3}£©$£¬¡­£¨15·Ö£©
¼´´ËÎ޸dz¤·½ÌåÐîË®³ØµÄÌå»ýVµÄ×î´óֵΪ4£¨m3£©£®  ¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éº¯ÊýÓë·½³ÌµÄÓ¦Ó㬺¯ÊýµÄ×îÖµ£¬º¯ÊýµÄµ¼ÊýÓ뺯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ó¦ÊÔ½ÌÓýϵĸßÈýѧÉúÉíÌåËØÖÊ¿°ÓÇ£¬½ÌÓý²¿ÃŶÔijÊÐ100Ãû¸ßÈýѧÉúµÄ¿ÎÍâÌåÓý¶ÍÁ¶Ê±¼ä½øÐе÷²é£®ËûÃǵĿÎÍâÌåÓý¶ÍÁ¶Ê±¼ä¼°ÏàÓ¦µÄƵÊýÈçÏÂ±í£º
Ô˶¯Ê±¼ä
£¨µ¥Î»£ºÐ¡Ê±£©
$[0£¬\frac{1}{6}£©$$[\frac{1}{6}£¬\frac{1}{3}£©$$[\frac{1}{3}£¬\frac{1}{2}£©$$[\frac{1}{2}£¬\frac{2}{3}£©$$[\frac{2}{3}£¬\frac{5}{6}£©$$[\frac{5}{6}£¬1£©$
×ÜÈËÊý10182225205
½«Ñ§ÉúÈÕ¾ù¿ÎÍâÌåÓýÔ˶¯Ê±¼äÔÚ$[\frac{2}{3}£¬1£©$ÉϵÄѧÉúÆÀ¼ÛΪ¡°¿ÎÍâÌåÓý´ï±ê¡±£®
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£º
¿ÎÍâÌåÓý²»´ï±ê¿ÎÍâÌåÓý´ï±êºÏ¼Æ
ÄÐ
Ů1055
ºÏ¼Æ
£¨2£©¸ù¾ÝÁÐÁª±íµÄÊý¾Ý£¬Èô°´95%µÄ¿É¿¿ÐÔÒªÇó£¬ÄÜ·ñÈÏΪ¡°¿ÎÍâÌåÓý´ï±ê¡±ÓëÐÔ±ðÓйأ¿
¸½£º${¦¶^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ýµ±¦¶2¡Ü2.706ʱ£¬ÎÞ³ä·ÖÖ¤¾ÝÅж¨±äÁ¿A£¬BÓйØÁª£¬¿ÉÒÔÈÏΪÁ½±äÁ¿ÎÞ¹ØÁª£»
µ±¦¶2£¾2.706ʱ£¬ÓÐ90%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£»
µ±¦¶2£¾3.841ʱ£¬ÓÐ95%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£»
µ±¦¶2£¾6.635ʱ£¬ÓÐ99%µÄ°ÑÎÕÅж¨±äÁ¿A£¬BÓйØÁª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ò»Ö»ÂìÒÏÔÚÈý±ß³¤·Ö±ðΪ3¡¢4¡¢5µÄÈý½ÇÐÎÃæÉÏ×ÔÓÉÅÀÐУ¬Ä³Ê±¿Ì¸ÃÂìÒϾàÀëÈý½ÇÐεÄÈý¸ö¶¥µãµÄ¾àÀë²»³¬¹ý1µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{12}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÓÃX¡¢Y¡¢ZÕâ3À಻ͬµÄÔª¼þÁ¬½Ó³ÉϵͳN£¬Ã¿¸öÔª¼þÊÇ·ñÕý³£¹¤×÷²»ÊÜÆäËüÔª¼þµÄÓ°Ï죬ÒÑÖªÔª¼þX¡¢Y¡¢ZÕý³£¹¤×÷µÄ¸ÅÂÊÒÀ´ÎΪ0.8¡¢0.7¡¢0.9£¬ÔòϵͳNÕý³£¹¤×÷µÄ¸ÅÂÊÊÇ0.776£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³Í¬Ñ§²Î¼Ó4ÃÅѧ¿ÆµÄѧҵˮƽ¿¼ÊÔ£¬¼ÙÉè¸ÃͬѧµÚÒ»ÃÅѧ¿ÆÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪ$\frac{2}{3}$£¬µÚ¶þÃÅѧ¿ÆÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪ$\frac{4}{5}$£¬µÚÈý¡¢µÚËÄÃÅѧ¿ÆÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ·Ö±ðΪm£¬n£¨m£¾n£©£¬ÇÒ²»Í¬Ñ§¿ÆÊÇ·ñÈ¡µÃÓÅÐã³É¼¨Ï໥¶ÀÁ¢£¬¼Ç¦ÎΪ¸ÃͬѧȡµÃÓÅÐã³É¼¨µÄ¿Î³ÌÊý£¬Æä·Ö²¼ÁÐΪÈçÏÂ±í£º
¦Î01234
p$\frac{1}{120}$xyz$\frac{1}{5}$
£¨1£©Çó¸ÃÉúÖÁÉÙÓÐ1ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ£»
£¨2£©Çóm£¬nµÄÖµ£»
£¨3£©ÇóÊýѧÆÚÍûE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª$\vec a=£¨4£¬2£©$£¬$\vec b=£¨2£¬y£©$£¬Èô$\vec a¡Î\vec b$£¬Ôòy=£¨¡¡¡¡£©
A£®1B£®-1C£®4D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÓÐ2ÈË´ÓÒ»×ù6²ã´óÂ¥µÄµ×²ã½øÈëµçÌÝ£¬¼ÙÉèÿ¸öÈË×ÔµÚ¶þ²ã¿ªÊ¼ÔÚÿһ²ãÀ뿪µçÌÝÊǵȿÉÄܵģ¬Ôò¸Ã2ÈËÔÚ²»Í¬²ãÀ뿪µçÌݵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{5}$C£®$\frac{4}{5}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}lo{g_2}x+2£¬x£¾0\\{3^x}£¬x¡Ü0\end{array}\right.$£¬Ôò$f[f£¨\frac{1}{8}£©]$µÄÖµ£¨¡¡¡¡£©
A£®3B£®$\frac{1}{3}$C£®-3D£®$-\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÓÐ10¼þ²úÆ·£¬ÆäÖÐ3¼þÊÇ´ÎÆ·£¬´ÓÖÐÈÎÈ¡2¼þ£¬ÈôX±íʾȡµ½´ÎÆ·µÄ¼þÊý£¬ÔòEX=$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸