精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\left\{\begin{array}{l}lo{g_2}x+2,x>0\\{3^x},x≤0\end{array}\right.$,则$f[f(\frac{1}{8})]$的值(  )
A.3B.$\frac{1}{3}$C.-3D.$-\frac{1}{3}$

分析 根据分段函数的表达式,代入进行求解即可.

解答 解:f($\frac{1}{8}$)=$lo{g}_{2}\frac{1}{8}$+2=-3+2=-1,
f(-1)=${3}^{-1}=\frac{1}{3}$,
即$f[f(\frac{1}{8})]$=f(-1)=$\frac{1}{3}$,
故选:B

点评 本题主要考查函数值的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等腰△OAB中|OA|=|OB|=2,且$|{\overrightarrow{{O}{A}}+\overrightarrow{{O}{B}}}|≥\frac{{\sqrt{3}}}{3}|{\overrightarrow{{A}{B}}}|$,那么$\overrightarrow{{O}{A}}•\overrightarrow{{O}{B}}$的取值范围是:(  )
A.[-2,4)B.(-2,4)C.(-4,2)D.(-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:在边长为6米的等边△ABC钢板内,作一个△DEF,使得△DEF的三边到△ABC所对应的三边之间的距离均x(0<x<$\frac{2}{3}$$\sqrt{3}$)米,过点D分别向AB,AC边作垂线,垂足依次为G,H;过点E分别向AB,BC边作垂线,垂足依次为M,N;过点F分别向BC,AC边作垂线,垂足依次为R,S.接着在△ABC的三个内角处,分别沿DG,DH、EM,EN、FR,FS进行切割,割去的三个全等的小四边形分别为AGDH、BMEN、CRFS.然后把矩形GDEM、NEFR、SFDH分别沿DE、EF、FD向上垂直翻折,并对翻折后的钢板进行无缝焊接(注:切割和无缝焊接过程中的损耗和费用忽略不计),从而构成一个无盖的正三棱柱蓄水池.
(1)若此无盖的正三棱柱蓄水池的侧面和底面造价均为a(a>0)万元/米2,求此无盖的正三棱柱蓄水池总造价的最小值;
(2)若此无盖的正三棱柱蓄水池的体积为V米3,求体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A为圆C:x2+y2=9上一动点,AM⊥x轴,垂足为M.动点N满足$\overrightarrow{ON}=\frac{{\sqrt{3}}}{3}\overrightarrow{OA}+(1-\frac{{\sqrt{3}}}{3})\overrightarrow{OM}$,设动点N轨迹为曲线C1
(Ⅰ)求曲线C1的方程;
(Ⅱ)斜率为-2的直线l与曲线C1交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(本题只限文科学生做)
已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若点P(x,y)的坐标x,y满足约束条件:$\left\{\begin{array}{l}x+y-6≤0\\ x-y+1≥0\\ x≥1\\ y≥1\end{array}\right.$,则$\frac{3x-4y}{5}$的最大值为(  )
A.$-\frac{1}{5}$B.-1C.$\frac{11}{5}$D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是两个夹角为120°的单位向量,$\overrightarrow a=3\overrightarrow{e_1}+2\overrightarrow{e_2}$,则|$\overrightarrow{a}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC是(  )
A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C相交于A、B两点,则|OA|2+|OB|2(O为坐标原点)的最小值为(  )
A.4B.8C.10D.12

查看答案和解析>>

同步练习册答案