分析 通过去绝对值符号,利用函数f(x)在区间(0,+∞)内存在最小值可知,当0<x<1时f(x)单调递减、当x>1时f(x)单调递增,进而计算可得结论.
解答 解:∵f(x)=x+a|x-1|,
∴f(x)=$\left\{\begin{array}{l}{(1-a)x+a,}&{x<1}\\{(1+a)x-a,}&{x≥1}\end{array}\right.$,
∵函数f(x)在区间(0,+∞)内存在最小值,
∴当0<x<1时f(x)单调递减,当x>1时f(x)单调递增,
∴1-a≤0,1+a≥0,
综上所述,-1≤a≤1,
故答案为:[-1,1].
点评 本题考查函数的最值及其几何意义,考查分类讨论的思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sinx | B. | y=x3-x | C. | y=2x | D. | y=lg(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分条件但不是必要条件 | ||
| C. | 必要条件但不是充分条件 | D. | 既不是充分条件又不是必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com