精英家教网 > 高中数学 > 题目详情
19.过抛物线y2=2x的顶点作互相垂直的两条弦OA、OB.
(1)求AB中点的轨迹方程;
(2)求证:直线AB过定点.

分析 (1)设直线OA的方程为y=kx(k≠0),代入抛物线方程,求得交点A,再设出直线OB的方程,可得交点B,再由中点坐标公式,运用平方消元,即可得到中点的轨迹方程;
(2)求得直线AB的方程,化简整理,再令y=0,可得x=2,即可得证.

解答 (1)解:∵依题意可知直线OA的斜率存在且不为0,
∴设直线OA的方程为y=kx(k≠0),
∴联立方程$\left\{\begin{array}{l}{y=kx}\\{{y}^{2}=2x}\end{array}\right.$,解得xA=$\frac{2}{{k}^{2}}$,yA=$\frac{2}{k}$,
以-$\frac{1}{k}$代上式中的k,解方程组$\left\{\begin{array}{l}{y=-\frac{1}{k}x}\\{{y}^{2}=2x}\end{array}\right.$,
解得xB=2k2,yB=-2k
∴A($\frac{2}{{k}^{2}}$,$\frac{2}{k}$),B(2k2,-2k),
设AB中点M(x,y),则由中点坐标公式,
得$\left\{\begin{array}{l}{x=\frac{1}{2}(\frac{2}{{k}^{2}}+2{k}^{2})}\\{y=\frac{1}{2}(\frac{2}{k}-2k)}\end{array}\right.$,
消去参数k,得y2=x-2,
即为AB中点的轨迹方程.
(2)证明:由(1)得A($\frac{2}{{k}^{2}}$,$\frac{2}{k}$),B(2k2,-2k),
则AB的斜率为$\frac{\frac{2}{k}+2k}{\frac{2}{{k}^{2}}-2{k}^{2}}$=$\frac{k}{1-{k}^{2}}$,
则有直线AB的方程为y+2k=$\frac{k}{1-{k}^{2}}$(x-2k2),
即为y=$\frac{k}{1-{k}^{2}}$(x-2),
令y=0,解得x=2.
则直线AB恒过定点(2,0).

点评 本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,求交点,同时考查两直线垂直的条件:斜率之积为-1,以及直线恒过定点的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{|lgx|,}&{0<x≤\frac{1}{10}}\\{-2(x-1)(x-3)-4,}&{x>\frac{1}{10}}\end{array}\right.$的值域是R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设等差数列{an}的前n项和为Sn,a5+a6=24,S11=143,数列{bn}的前n项和为Tn满足2${\;}^{{a}_{n}-1}$=λTn-(a1-1)(n∈N+
(1)求数列 {an}的通项公式
(2)若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn,试证明Tn<$\frac{1}{6}$;
(3)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=|x+1|的单调增区间是(  )
A.(-∞,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在一次区域统考中,为了解各学科的成绩情况,从所有考生成绩中随机抽出20位考生的成绩进行统计分析,其中数学学科的频率分布直方图如图所示,据此估计,在本次考试中数学成绩的方差为110.(同一组中的数据用该组区间的中点值作代表.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示是一个程序框图,输出的结果是(  )
A.1616B.1617C.1716D.1717

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[1,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的取值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:直线SC⊥平面AMN;
(Ⅲ)求几何体MANCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=2lnx+2x-a,若存在b∈[1,e],使得f[f(b)]=b成立,则实数a的取值范围是(  )
A.[2,2+2e]B.[1,2+2e]C.[0,2]D.[1,2+e]

查看答案和解析>>

同步练习册答案