10£®ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a5+a6=24£¬S11=143£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTnÂú×ã2${\;}^{{a}_{n}-1}$=¦ËTn-£¨a1-1£©£¨n¡ÊN+£©
£¨1£©ÇóÊýÁР{an}µÄͨÏʽ
£¨2£©ÈôÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍΪTn£¬ÊÔÖ¤Ã÷Tn£¼$\frac{1}{6}$£»
£¨3£©ÊÇ·ñ´æÔÚ·ÇÁãʵÊý¦Ë£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝµÈ²îÊýÁеÄÐÔÖʽ¨Á¢·½³Ì×éÇó³ö¹«²î¼´¿ÉÇóÊýÁР{an}µÄͨÏʽ
£¨2£©ÇóÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄͨÏʽ£¬ÀûÓÃÁÑÏî·¨½øÐÐÇóºÍ£¬¼´¿ÉÖ¤Ã÷²»µÈʽTn£¼$\frac{1}{6}$£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁе͍Ò壬Çó³öÊýÁÐ{bn}µÄͨÏʽ£¬½øÐÐÅжϼ´¿É£®

½â´ð ½â£º£¨1£©ÔڵȲîÊýÁÐÖУ¬
¡ßS11=143=11a6£¬¡àa6=13£¬
¡ßa5+a6=24£¬¡àa5=11£¬¼´¹«²îd=13-11=2£¬
ÔòÊýÁР{an}µÄͨÏʽan=a6+2£¨n-6£©=13+2£¨n-6£©=2n+1£®
£¨2£©$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n+1£©£¨2n+3£©}$=$\frac{1}{2}$£¨$\frac{1}{2n+1}$-$\frac{1}{2n+3}$£©£¬
ÔòÊýÁÐ{$\frac{1}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍΪTn=$\frac{1}{2}$£¨$\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+¡­+$$\frac{1}{2n+1}$-$\frac{1}{2n+3}$£©=$\frac{1}{2}$£¨$\frac{1}{3}$-$\frac{1}{2n+3}$£©=$\frac{1}{6}$$-\frac{1}{4n+6}$£¼$\frac{1}{6}$£¬
¼´Tn£¼$\frac{1}{6}$£»
£¨3£©¡ßa1=3£¬2${\;}^{{a}_{n}-1}$=¦ËTn-£¨a1-1£©£¬
¡à4n=¦ËTn-2£¬
¼´Tn=$\frac{1}{¦Ë}•{4}^{n}+\frac{2}{¦Ë}$£¬µ±n=1ʱ£¬b1=$\frac{6}{¦Ë}$£¬
µ±n¡Ý2ʱ£¬bn=Tn-Tn-1=$\frac{1}{¦Ë}•{4}^{n}+\frac{2}{¦Ë}$-$\frac{1}{¦Ë}{4}^{n-1}-\frac{2}{¦Ë}$=$\frac{3}{¦Ë}•{4}^{n-1}$£¬
¼´bn+1=4bn£¬
ÈôÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬
Ôòb2=4b1£¬
¡ßb1=$\frac{6}{¦Ë}$£¬b2=$\frac{12}{¦Ë}$£¬²»Âú×ãÌõ¼þb2=4b1£¬
¡à²»´æÔÚ·ÇÁãʵÊý¦Ë£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁÐͨÏʽµÄÇó½â£¬ÒÔ¼°µÈ²îÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬ÊýÁÐÓë²»µÈʽµÄ¹ØÏµ£¬ÒÔ¼°ÀûÓÃÁÑÏî·¨½øÐÐÇóºÍ£¬¿¼²éѧÉúµÄÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôÈý½ÇÐεÄÈý±ß³¤¹¹³ÉµÈ²îÊýÁУ¬Ôò³Æ´ËÈý½ÇÐÎΪ¡°Ë³ÐòÈý½ÇÐΡ±£®ÒÑÖª¡÷ABCÊÇ˳ÐòÈý½ÇÐΣ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬A=60¡ã£¬c=2£¬Ôòa¡¢bµÄÖµ·Ö±ðΪ2¡¢2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®°ÑÕýÕûÊý1£¬2£¬3£¬4£¬5£¬6£¬¡­°´Ä³ÖÖ¹æÂÉÌîÈëÏÂ±í£º
 2  6  10  14 
1 45 89 1213 ¡­£®
 3  7  11  15 
°´ÕÕÕâÖÖ¹æÂɼÌÐøÌîд£¬ÄÇô2015³öÏÖÔÚ£¨¡¡¡¡£©
A£®µÚ1ÐеÚ1510ÁÐB£®µÚ3ÐеÚ1510ÁÐC£®µÚ2ÐеÚ1511ÁÐD£®µÚ3ÐеÚ1511ÁÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÓÐÁ½ÖÖÕý¶à±ßÐΣ¬ÆäÖÐÒ»Õý¶à±ßÐεÄÒ»ÄڽǵĶÈÊýÓëÁíÒ»Õý¶à±ßÐεÄÒ»ÄڽǵĻ¡¶ÈÊýÖ®±ÈΪ144£º¦Ð£¬ÇóÊʺϵÄÕý¶à±ßÐεıßÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬ÈôÊä³öµÄS=41£¬ÔòÅжϿòÄÚÓ¦Ì¡¡¡¡£©
A£®k£¾4£¿B£®k£¾5£¿C£®k£¾6£¿D£®k£¾7£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®µÈ±ÈÊýÁÐ{an}ÖÐa1=512£¬¹«±Èq=-$\frac{1}{2}$£¬¼Ç¢òn=a1¡Áa2¡Á¡­¡Áan£¨¼´IIn±íʾÊýÁÐ{an}µÄǰnÏîÖ®»ý£©£¬Ôò¢ò9¡¢¢ò10¡¢¢ò11¡¢¢ò12ÖÐֵΪÕýÊýµÄÊÇ¢ò9£¬¢ò12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{an}ÖУ¬Èôa5•a6=8£¬Ôòlog2a1+log2a2+¡­+log2a10=15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¹ýÅ×ÎïÏßy2=2xµÄ¶¥µã×÷»¥Ïà´¹Ö±µÄÁ½ÌõÏÒOA¡¢OB£®
£¨1£©ÇóABÖеãµÄ¹ì¼£·½³Ì£»
£¨2£©ÇóÖ¤£ºÖ±ÏßAB¹ý¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=$\frac{{n}^{2}}{{2}^{n}}$£¨n¡ÊN*£©£¬ÔòÕâ¸öÊýÁÐÊÇ·ñ´æÔÚ×î´óÏÈô´æÔÚ£¬ÇëÇó³ö×î´óÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸