精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=5$,则|$2\overrightarrow a-\overrightarrow b$|的值为(  )
A.21B.$\sqrt{21}$C.$\sqrt{23}$D.$\sqrt{35}$

分析 根据平面向量的数量积与模长公式,计算|$2\overrightarrow a-\overrightarrow b$|的值即可.

解答 解:向量$\overrightarrow a$与$\overrightarrow b$的夹角为${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=5$,
∴${(2\overrightarrow{a}-\overrightarrow{b})}^{2}$=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$
=4×22-4×2×5cos60°+52
=21;
∴|$2\overrightarrow a-\overrightarrow b$|=$\sqrt{21}$.
故选:B.

点评 本题考查了平面向量数量积与模长公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获得利润分别为4万元、3万元,则该企业每天可获得最大利润为13万元
  甲 乙 原料限额
 A(吨) 2 5 10
 B(吨) 6 3 18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等腰△ABC中,AB=AC=1,D是线段AC的中点,设BD=x,△ABC的面积S=f(x),则函数f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图四个散点图中,适合用线性回归模型拟合其中两个变量的是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,22),从中随机取一件,其长度误差落在区间(2,4)内的概率为(  )(若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若(x-$\frac{2}{{x}^{2}}$)n的展开式中二项式系数之和为64,则n等于(  )
A.5B.7C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若i是虚数单位,复数$\frac{1-2i}{i}$的虚部为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=log2(ax2-2x+2)的定义域为Q.
(1)若a>0且[2,3]∩Q=∅,求实数a的取值范围;
(2)若[2,3]⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足a1=$\frac{1}{3}$,an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,n∈N*,证明:
(1)数列{an}为递增数列;
(2)$\frac{n}{2n+1}$≤an≤$\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

同步练习册答案