精英家教网 > 高中数学 > 题目详情
5.若复数(1+mi)(3+i)(i是虚数单位,m∈R)是纯虚数,则复数$\frac{m+3i}{1-i}$的模等于(  )
A.1B.2C.3D.4

分析 由已知求得m,代入$\frac{m+3i}{1-i}$,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.

解答 解:∵(1+mi)(3+i)=3-m+(3m+1)i为纯虚数,
∴m=3,
则$\frac{m+3i}{1-i}$=$\frac{3+3i}{1-i}=\frac{3(1+i)^{2}}{(1-i)(1+i)}=3i$,
∴复数$\frac{m+3i}{1-i}$的模等于3.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,考查复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.己知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),A、C是椭圆短轴的两端点,过点E(3c,0)的直线AE与椭圆相交于另一点B,且F1A∥F2B
(I )求椭圆的离心率;
(II)设直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i为虚数单位,复数z满足z(2-i)=i3,则复数z的虚部为$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.摩拜单车和ofo小黄车等各种共享自行车已经遍布大街小巷,给我们的生活带来了便利.某自行车租车点的收费标准是:每车使用1小时之内是免费的,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为$\frac{1}{4}$,$\frac{1}{2}$;1小时以上且不超过2小时还车的概率分别为$\frac{1}{2}$,$\frac{1}{4}$;两人租车时间都不会超过3小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率;
(Ⅱ)设甲乙两人所付租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),当α=$\frac{π}{3}$时,则C1与C2的交点坐标为(1,0),($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,x2+x+1>0”
B.命题“若x2-3x+2=0,则x=1或x=2”的否命题是:“若x2-3x+2=0,则x≠1或x≠2”
C.直线l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要条件是$a=\frac{1}{2}$
D.命题“若x=y,则sinx=siny”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的前n项和为Sn,且$6{S_n}={3^{n+1}}+a$(a∈N+).
(Ⅰ)求a的值及数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{{{{(-1)}^{n-1}}(2{n^2}+2n+1)}}{{{{({{log}_3}{a_n}+2)}^2}{{({{log}_3}{a_n}+1)}^2}}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读下列程序框图,输出的结果s的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.$-\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足$\frac{z+2i}{z}$=2+3i,其中i是虚数单位,则$\overline z$=(  )
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

同步练习册答案