分析 (1)利用正弦函数的对称中心,求得ω的取值范围,0<ω<2,0<ω<2,求得ω=1,
(2)写出函数解析式,$T=\frac{2π}{ω}$=π,求得周期,由正弦函数图形求得单调递增区间,
(3)f(x)≥$\frac{3}{2}$,由正弦函数的图象求得x的解集.
解答 解:(1)点(-$\frac{π}{6}$,0)为函数f(x)函数图象的对称中心,
∴f(-$\frac{π}{6}$)=0,即sin(-$\frac{π}{3}ω+\frac{π}{3}$)=0,
∴-$\frac{π}{3}ω+\frac{π}{3}$=kπ,k∈Z,
ω=1-3k,k∈Z,
0<ω<2,ω=1,
∴ω=1,
(2)f(x)=3sin(2x+$\frac{π}{3}$),
∴$T=\frac{2π}{ω}$=π,
函数的周期为π,
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
-$\frac{5π}{12}+kπ$≤x≤$\frac{π}{12}+kπ$,k∈Z,
∴函数的单调递减区间为[-$\frac{5π}{12}+kπ$,$\frac{π}{12}+kπ$],k∈Z,
(3)f(x)≥$\frac{3}{2}$即3sin(2x+$\frac{π}{3}$)≥$\frac{3}{2}$,
$\frac{π}{6}+2kπ$≤2x+$\frac{π}{3}$≤$\frac{5π}{6}+2kπ$,k∈Z,
f(x)≥$\frac{3}{2}$的解集是x∈[$\frac{π}{6}+2kπ$,$\frac{5π}{6}+2kπ$].
点评 本题考查求正弦函数的解析式、周期和单调区间及根据函数图象求函数的解集,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰直角三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的对称中心为($\frac{π}{6}$+kπ,0)(k∈Z) | B. | f(-$\frac{7π}{12}$)=-2 | ||
| C. | 函数f(x)在[$\frac{3π}{2}$,2π]上是减函数 | D. | 函数f(x)在[π,$\frac{4π}{3}$]上是减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com