精英家教网 > 高中数学 > 题目详情
3.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则下列结论正确的是(  )
A.函数f(x)的对称中心为($\frac{π}{6}$+kπ,0)(k∈Z)B.f(-$\frac{7π}{12}$)=-2
C.函数f(x)在[$\frac{3π}{2}$,2π]上是减函数D.函数f(x)在[π,$\frac{4π}{3}$]上是减函数

分析 由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再根据正弦函数的单调性以及它的图象的对称性,得出结论.

解答 解:由函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象,可得$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{11π}{12}$-$\frac{5π}{12}$,求得ω=2.
再根据五点法作图,可得2•$\frac{5π}{12}$+φ=$\frac{π}{2}$,求得ω=-$\frac{π}{3}$,∴f(x)=2sin(2x-$\frac{π}{3}$).
令2x-$\frac{π}{3}$=kπ,可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,可得函数的对称中心为($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z,故A不正确.
∵f(-$\frac{7π}{12}$)=2sin(-$\frac{7π}{6}$-$\frac{π}{3}$)=2sin(-$\frac{3π}{2}$)=-2sin$\frac{3π}{2}$=-2,不故B正确.
在[$\frac{3π}{2}$,2π]上,2x-$\frac{π}{3}$∈[$\frac{8π}{3}$,$\frac{11π}{4}$],故f(x)=2sin(2x-$\frac{π}{3}$)在[$\frac{3π}{2}$,2π]上是减函数,故C正确.
∵在[π,$\frac{4π}{3}$]上,2x-$\frac{π}{3}$∈[$\frac{5π}{3}$,$\frac{7π}{3}$],故f(x)=2sin(2x-$\frac{π}{3}$)在[$\frac{3π}{2}$,2π]上没有单调性,故D不正确,
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性以及它的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-$\frac{a}{x}$(a∈R),则下列结论正确的是(  )
A.?a∈R,f(x)是偶函数B.?a∈R,f(x)是奇函数
C.?a∈(0,+∞),f(x)在(-∞,0)上是增函数D.?a∈(0,+∞),f(x)在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=3sin(2ωx+$\frac{π}{3}$),其中0<ω<2,若点(-$\frac{π}{6}$,0)为函数f(x)图象的一个对称中心.(1)求ω的值;
(2)求函数f(x)的周期和单调增区间;
(3)求f(x)≥$\frac{3}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(4cosx,$\frac{1}{3}$),$\overrightarrow{b}$=(sin(x+$\frac{π}{6}$),-1),且$\overrightarrow{a}•\overrightarrow{b}$=0,则sin(2x+$\frac{7π}{6}$)=(  )
A.-$\frac{2\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(-3,1),则$\overrightarrow{AB}$=(  )
A.(4,-3)B.(-4,3)C.(-2,-1)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合A={x|-1≤x≤1},B={x|x∈Z},则A∩B=(  )
A.(-1,1)B.{0,1}C.{-1,0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=$\frac{3}{2}$,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$上的投影为(  )
A.-1B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,用四种不同颜色的灯泡安装在图中的A,B,C,D,E,F六个点,要求每个点安装一个灯袍,且图中每条线段两个端点的灯泡颜色不同,则不同的安装方法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

同步练习册答案