精英家教网 > 高中数学 > 题目详情
18.已知$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(-3,1),则$\overrightarrow{AB}$=(  )
A.(4,-3)B.(-4,3)C.(-2,-1)D.(2,1)

分析 根据向量减法的几何意义计算.

解答 解:$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$=(-4,3).
故选:B.

点评 本题考查了平面向量的坐标运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,A、B、C所对的边分别为a、b、c,且bsinB=(sinA-sinC)(a+c)数列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x、y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ x+2y≤6\\ x≥0\\ y≥0\end{array}\right.$,则目标函数k=2x+3y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,sin(A+B)+2sin(B+C)cos(A+C)=0,则△ABC一定是(  )
A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n∈N*且n≥2),则a81=640.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则下列结论正确的是(  )
A.函数f(x)的对称中心为($\frac{π}{6}$+kπ,0)(k∈Z)B.f(-$\frac{7π}{12}$)=-2
C.函数f(x)在[$\frac{3π}{2}$,2π]上是减函数D.函数f(x)在[π,$\frac{4π}{3}$]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,|$\overrightarrow{AC}$|=2,则$\overrightarrow{CA}$•$\overrightarrow{BC}$的值是(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法,改革后完成这项工作减少了一个步骤,改革后完成这项工作有27种方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mx+3,g(x)=x2+2x+m.
(I)解不等式f(x)≥g(x);
(Ⅱ)若不等式f(x)+g(x)≥0对任意的x∈(-1,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案