精英家教网 > 高中数学 > 题目详情
13.已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n∈N*且n≥2),则a81=640.

分析 由已知数列递推式可得$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}=2$,由此可得数列{$\sqrt{{S}_{n}}$}是以1为首项,2为公差的等差数列,求出等差数列的通项公式后可得Sn,再由a81=S81-S80求解.

解答 解:由已知Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$,可得$\sqrt{{S}_{n}{S}_{n-1}}(\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}})=2\sqrt{{S}_{n}{S}_{n-1}}$,
∵an>0,
∴$\sqrt{{S}_{n}{S}_{n-1}}>0$,
则$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}=2$,
∴数列{$\sqrt{{S}_{n}}$}是以1为首项,2为公差的等差数列,
故$\sqrt{{S}_{n}}$=2n-1,即Sn=(2n-1)2
∴a81=S81-S80=1612-1592=640.
故答案为:640.

点评 本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某市交警部门在调查一起车祸的过程中,所有的目击人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中家公司有100量桑塔纳出租车,3000辆帕萨特出租车,乙公司有3000辆桑塔纳出租车,100辆帕萨特出租车,交警部门认定肇事车为哪个公司比较合理?乙公司.(填“甲公司”或“乙公司”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.6名同学排成一排,则甲乙恰好相邻排在一起的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$).
(1)求f(x)的最小正周期及最大值;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(C)=$\frac{3}{4}$,b=4,且△ABC的面积为2$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某产品生产厂家生产一种产品,每生产这种产品x(百台),其总成本为G(x)(万元),其中固定成本为42万元,且每生产1百台的生产成本为15万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足$R(x)=\left\{\begin{array}{l}-6{x^2}+63x,0≤x≤5\\ 165,x>5\end{array}\right.$假定该产品产销平衡(即生产的产品都能卖掉),根据上述规律,完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)要使工厂有盈利,求产量x的范围;
(3)工厂生产多少台产品时,可使盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(-3,1),则$\overrightarrow{AB}$=(  )
A.(4,-3)B.(-4,3)C.(-2,-1)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.两条直线a1x+b1y+c1=0与a2x+b2y+c2=0垂直的充要条件是(  )
A.(-$\frac{{a}_{1}}{{b}_{1}}$)(-$\frac{{a}_{2}}{{b}_{2}}$)=-1B.(a1,b1)•(a2,b2)=0
C.-$\frac{{a}_{1}}{{b}_{1}}$=$\frac{{b}_{2}}{{a}_{2}}$D.a1b2=a2b1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要得到函数y=sin(x-$\frac{π}{5}$)的图象,只需将函数y=sinx的图象(  )
A.向左平移$\frac{π}{10}$个单位B.向右平移$\frac{π}{5}$个单位
C.向左平移$\frac{π}{5}$个单位D.向右平移$\frac{π}{10}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将分别标有新、春、快、乐四个字的红包分给三名儿童,每名儿童至少分到一个红包,且标有新、春两个字的红包不能分给同一名儿童,则不同的分法种数为(  )
A.15B.20C.30D.42

查看答案和解析>>

同步练习册答案