精英家教网 > 高中数学 > 题目详情
16.sin15°cos165°=$-\frac{1}{4}$.

分析 直接利诱导公式以及二倍角公式化简求解即可.

解答 解:sin15°cos165°=-sin15°cos15°=-$\frac{1}{2}$sin30°=$-\frac{1}{4}$.
故答案为:$-\frac{1}{4}$.

点评 本题考查诱导公式以及二倍角公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知抛物线C:y2=6x的焦点为F,过点F的直线l交抛物线于两点A,B,交抛物线的准线于点C,若$\overrightarrow{FC}=3\overrightarrow{FA}$,则|FB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知两座灯塔A和B与海洋观察站C的距离都等于1km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则求:灯塔A与灯塔B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C极坐标方程:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,点P极坐标为$({2\sqrt{3},\frac{π}{6}})$,直线l过点P,且倾斜角为$\frac{π}{3}$.
(1)求曲线C的直角坐标方程及直线l参数方程;
(2)若直线l与曲线C交于A,B两点,求$|{\frac{1}{{|{PA}|}}-\frac{1}{{|{PB}|}}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x,y满足$\left\{\begin{array}{l}x+y-1≥0\\ x-2y+2≥0\\ 2x-y-2≤0\end{array}\right.$,目标函数z=ax+y的最大值不大于3a,则实数a的取值范围是(  )
A.[2,+∞)B.$[0,\frac{1}{3}]$C.$[\frac{1}{3},3]$D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线a与平面α不垂直,则下列说法正确的是(  )
A.平面α内有无数条直线与直线a垂直
B.平面α内有任意一条直线与直线a不垂直
C.平面α内有且只有一条直线与直线a垂直
D.平面α内可以找到两条相交直线与直线a垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.演绎推理“因为f′(x0)=0时,x0是f(x)的极值点,而对于函数f(x)=x3,f′(0)=0,所以0是函数f(x)=x3的极值点.”所得结论错误的原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.全不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\left\{\begin{array}{l}{cos(π{x}^{2}),-1<x<0}\\{{e}^{x}-1,x≥0}\end{array}\right.$,若f(a)=0,则a的所有可能值组成的集合为(  )
A.{0}B.{0,$\frac{\sqrt{2}}{2}$}C.{0,-$\frac{\sqrt{2}}{2}$}D.{-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)(t>0)为抛物线C上的点,且|MF|=5,线段MF的中点为N,点T为C上的一个动点,则|TF|+|TN|的最小值为$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案