精英家教网 > 高中数学 > 题目详情
1.若复数z=$\frac{1+i}{1-i}$,$\overline{z}$为z的共轭复数,则($\overline{z}$)2017=-i.

分析 利用复数代数形式的乘除运算化简,再由虚数单位i的性质求解.

解答 解:∵z=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{2}=i$,
∴$\overline{z}=-i$,
∴($\overline{z}$)2017=(-i)2017=-i.
故答案为:-i.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知α,β是两个不同的平面,m,n是两条不同的直线,有下列命题:
①若m,n平行于同一平面,则m与n平行;
②若m⊥α,n∥α,则m⊥n;
③若α,β不平行,则在α内不存在与β平行的直线;
④若α∩β=n,m∥n,则m∥α且m∥β;
⑤若m∥n,α∥β,则m与α所成角等于n与β所成角.
其中真命题有②⑤.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sinx•sin({x+\frac{π}{6}})$.
(1)求f(x)的单调递增区间;
(2)在锐角△ABC中,内角A,B,C所对的边分别是a、b、c,且$f(A)=\frac{{\sqrt{3}}}{4},a=2$,求△ABC的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等腰△ABC的底边$AB=6\sqrt{6}$,高CD=3,点E是线段BD上异于点B,D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)证明EF⊥平面PAE;
(Ⅱ)记BE=x,V(x)表示四棱锥P-ACFE的体积,求V(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=4x与曲线y=4x2在第一象限围成的封闭图形的图形的面积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2lnx+x2-2ax(a>0).
(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;
(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)-f(x2)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y是实数,i是虚数单位,$\frac{x}{1+i}=1-yi$,则复数x+yi在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z1,z2在复平面内对应的点关于直线y=x对称,z1=1+2i,则$\frac{z_1}{z_2}$=(  )
A.$\frac{3}{5}-\frac{4}{5}i$B.$\frac{3}{5}+\frac{4}{5}i$C.$\frac{4}{5}-\frac{3}{5}i$D.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于n个向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$,若存在n个不全为0的示数k1,k2,k3,…,kn,使得:k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$+…+kn$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$成立;则称向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是线性相关的,按此规定,能使向量$\overrightarrow{{a}_{1}}$=(1,0),$\overrightarrow{{a}_{2}}$=(1,-1),$\overrightarrow{{a}_{3}}$=(2,2)线性相关的实数k1,k2,k3,则k1+4k3的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案