精英家教网 > 高中数学 > 题目详情
15.某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:
年龄段18-24岁25-49岁50-64岁65岁及以上
频数35202520
支持脱欧的人数10101515
(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;
年龄低于50岁的人数年龄不低于50岁的人数合计
支持“脱欧”人数
不支持“脱欧”人数
合计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
K01.3232.0722.7063.8415.0246.635
(Ⅱ)若采用分层抽样的方式从18-64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18-24岁的概率.

分析 (Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;
(Ⅱ)利用列举法确定基本事件的个数,即可得出这2人至少有1人年龄在18-24岁的概率.

解答 解:(Ⅰ)

年龄低于50岁的人数年龄不低于50岁的人数合计
支持“脱欧”人数203050
不支持“脱欧”人数351550
合计5545100
${K^2}=\frac{{100×{{(20×15-30×35)}^2}}}{55×45×50×50}≈9.091>6.635$
所以有99%的把握认为以50岁为分界点对是否支持脱离欧盟的态度有差异.
(Ⅱ)18-24岁2人,25-49岁2人,50-64岁3人.
记18-24岁的两人为A,B;25-49岁的两人为C,D;50-64岁的三人为E,F,G,
则AB,AC,AD,AE,AF,AG,BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,FG共21种,
其中含有A或B的有11种.
故$P=\frac{11}{21}$.

点评 本题考查独立性检验,考查概率的计算,考查学生的阅读与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知正四棱台(由正四棱锥截得的棱台叫做正四棱台)上底面边长为6,高和下底面边长都是12,求它的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$|{\overrightarrow a}|=6$,$|{\overrightarrow b}|=3\sqrt{3}$且向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30o,则$\overrightarrow a•\overrightarrow b$=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函数h(x)=f(x)-$\frac{1}{2}{log_2}({a•{2^x}+2\sqrt{2}a})({a>0})$在R上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的首项a1=2,数列{bn}为等比数列,且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,又b10b11=2017${\;}^{\frac{1}{10}}$,则a21=4034.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市为了制定合理的节电方案,供电局对居民用电进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;
(Ⅱ)现从第8组和第9组的居民中任选取2户居民进行访问,则两组中各有一户被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在多面体ABCDEF中,平面ADEF与平面ABCD垂直,ADEF是正方形,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1,M为线段ED的中点.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,菱形ABCD的边长为12,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=6$\sqrt{2}$.

(1)求证:OD⊥平面ABC;
(2)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数$f(x)=\sqrt{3}{cos^2}x+2sinxcosx-\sqrt{3}{sin^2}x$,有如下问题:
①$x=\frac{π}{12}$是f(x)的图象的一条对称轴;
②$?x∈R,f({\frac{π}{3}+x})=-f({\frac{π}{3}-x})$;
③将f(x)的图象向右平移$\frac{π}{3}$个单位,可得到奇函数的图象;
④?x1,x2∈R,|f(x1)-f(x2)|≥4.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案