精英家教网 > 高中数学 > 题目详情
6.已知$|{\overrightarrow a}|=6$,$|{\overrightarrow b}|=3\sqrt{3}$且向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30o,则$\overrightarrow a•\overrightarrow b$=27.

分析 由条件进行数量积的计算,便可求出$\overrightarrow{a}•\overrightarrow{b}$的值.

解答 解:根据条件,$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos30°$=$6×3\sqrt{3}×\frac{\sqrt{3}}{2}=27$.
故答案为:27.

点评 考查向量夹角的概念,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,当a=2,b=3时,输出s值为(  )
A.6B.8C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列四个函数中偶函数的序号为①④
①$f(x)=\root{3}{x^2}+1$
②$f(x)=x+\frac{1}{x}$
③$f(x)=\sqrt{1+x}-\sqrt{1-x}$
④f(x)=x2+x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知平行四边形ABCD的三个顶点的坐标为A(-1,4),B(-2,-1),C(2,3).
(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}中,a2+a3=9,a4+a5=21,那么它的公差是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=log2(1+x)-log2(1-x)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并加以说明;
(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:
年龄段18-24岁25-49岁50-64岁65岁及以上
频数35202520
支持脱欧的人数10101515
(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;
年龄低于50岁的人数年龄不低于50岁的人数合计
支持“脱欧”人数
不支持“脱欧”人数
合计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
K01.3232.0722.7063.8415.0246.635
(Ⅱ)若采用分层抽样的方式从18-64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18-24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+x2-ax(a∈R).
(1)若x=3是f(x)的极值点,求f(x)的单调区间;
(2)求g(x)=f(x)-2x在区间[1,e]的最小值h(a).

查看答案和解析>>

同步练习册答案